



Prepared for:

Hartwig



Our Ref: TERRA21-502.ASSMP

Prepared for: Ms Hartwig C/ Planning Lawyer Solutions Level 8, 65 York Street Sydney NSW 2000

7 December 2021

# RE: No. 60 Macleay Street, Narrawallee NSW Acidic (and Acidic Sulfate) Soil Management Plan

Dear Mr Sir,

Please find enclosed the Acid Sulfate Soil Management Plan for the above site in relation to the proposed residential development of the site. The proposed development includes a residential dwelling with pool. This plan should be read in conjunction with the Attachment "Your Report". Should you have any questions please contact the undersigned.

For and on behalf of Terra Insight

Karen Gates Principal Engineer/ Director CPEng MIEaust BEng MEngSc(Geot) MEnvMgt MBA



# Contents

| 1    | Introduction 1                                     |                                             |    |  |  |  |  |  |  |
|------|----------------------------------------------------|---------------------------------------------|----|--|--|--|--|--|--|
| 2    | Environmental Risks Involving Disturbance of ASS 1 |                                             |    |  |  |  |  |  |  |
| 3    | Objectives 1                                       |                                             |    |  |  |  |  |  |  |
| 4    | Investigation Findings                             |                                             |    |  |  |  |  |  |  |
|      | 4.1                                                | Site location                               | 1  |  |  |  |  |  |  |
|      | 4.2                                                | Geology                                     | 1  |  |  |  |  |  |  |
|      | 4.3                                                | Historical Aerial images                    | 2  |  |  |  |  |  |  |
|      | 4.4                                                | ASS Maps                                    | 2  |  |  |  |  |  |  |
|      | 4.5                                                | Surface Conditions                          | 2  |  |  |  |  |  |  |
|      | 4.6                                                | Subsurface Conditions                       | 3  |  |  |  |  |  |  |
|      | 4.7                                                | Laboratory testing                          | 3  |  |  |  |  |  |  |
|      | 4.8                                                | Conclusions                                 | 6  |  |  |  |  |  |  |
| 5    | Exten                                              | t of Proposed Soil Disturbances             | 6  |  |  |  |  |  |  |
| 6    | Acidio                                             | ; (and Acidic Sulfate) Soil Management Plan | 6  |  |  |  |  |  |  |
|      | 6.1                                                | Extent of Proposed Soil Disturbances        | 6  |  |  |  |  |  |  |
|      | 6.2                                                | Training and Orientation                    | 6  |  |  |  |  |  |  |
|      | 6.3                                                | Soil Treatment                              | 7  |  |  |  |  |  |  |
|      | 6.4                                                | Temporary Stockpiling                       | 7  |  |  |  |  |  |  |
|      | 6.5                                                | Temporary excavations                       | 8  |  |  |  |  |  |  |
|      | 6.6                                                | Permanent Excavations                       | 8  |  |  |  |  |  |  |
|      | 6.7                                                | Water Quality Control                       | 8  |  |  |  |  |  |  |
|      | 6.8                                                | Rate for Emergency Liming                   | 9  |  |  |  |  |  |  |
|      | 6.9                                                | ASS Validation                              | 9  |  |  |  |  |  |  |
|      | 6.10                                               | Disposal of Untreated ASS Below Water Table | 9  |  |  |  |  |  |  |
|      | 6.11                                               | Disposal of treated ASS                     | 9  |  |  |  |  |  |  |
|      | 6.12                                               | Reuse of Treated Soils Onsite               | 9  |  |  |  |  |  |  |
|      | 6.13                                               | ASS Validation                              | 10 |  |  |  |  |  |  |
|      | 6.14                                               | Monitoring and Reporting                    | 10 |  |  |  |  |  |  |
| Figu | ires                                               |                                             | 11 |  |  |  |  |  |  |



4 5 8

# Tables

| Table 4-1:Summary of ASS field screening laboratory results  |  |
|--------------------------------------------------------------|--|
| Table 4-2: Summary of Chromium Suite laboratory test results |  |
| Table 6-1:–Surface Water Monitoring                          |  |

# Figures

- Figure 1: Site Location
- Figure 2: Historical Aerial Imagery
- Figure 3: ASS Mapping Excerpt
- Figure 4: Location of Test Sites
- Figure 5: ASS Treatment Pad details

# Appendices

- Appendix A: Your Report
- Appendix B: Proposed Plans
- Appendix C: Site Images
- Appendix D: Engineering Logs
- Appendix E: Laboratory Certificates
- Appendix F: ASS Handouts for residential developments



# 1 Introduction

The following Acid Sulfate Soil Management Plan (ASSMP) has been prepared for the management of material excavated during the proposed construction of residential building and pool at No. 60 Macleay Street, Narrawallee NSW, here after referred to as the site. Proposed plans are attached in Appendix B. The location of the site is shown on Figure 1. This ASSMP presents the approach and methodology for Acid Sulfate Soils (ASS) management at the site to be followed by the contactor and its subcontractors. It provides a basis for specifications for ASS management. However, it is important to note that this document is not a specification.

# 2 Environmental Risks Involving Disturbance of ASS

Acid sulfate soils (ASS) are soils that contain iron pyrites. The pyrite is formed under specific conditions. These conditions require the presence of iron, sulphur and organic matter and generally occur only in alluvial soils of Holocene age. The pyrites oxidise when exposed to oxygen and, when combined with water, form sulfuric acid. This normally occurs when soils are changed from anaerobic to aerobic conditions.

The sulfuric acid will leach out of the soil and may lower the pH of receiving waters, increase the levels of metals in the receiving waters (particularly iron and aluminium) and strip the natural neutralising capacity from the receiving waters. These consequences can have a serious impact on the receiving waters and its biosystem. There are two types of ASS. These are:

- Actual acid sulfate soils (AASS) which are soils in which the pyrite has already been oxidised and sulfuric acid is present in the soil; and
- **potential acid sulfate soils (PASS)** where the pyrite is present but has not been oxidised.

Both AASS and PASS have the potential to do environmental harm.

# 3 Objectives

The objective of this ASSMP is to lower the potential environmental impacts associated with the excavations on the site in relation to the proposed construction of footings for the proposed building and swimming pool. Excavations for these works are not expected to exceed 1m in depth. Piling below 1 m depth will adopt methods that do not involve disturbance to the soils or reduction in the elevation of the groundwater table. Piling is to involve screw piling or driven piles. The ASSMP was developed generally in accordance with the following guidelines:

- ASS Manual prepared by the ASS Management Advisory Committee (1998);
- National Environment Protection Measure (1999);
- NSW DECCW Waste Classification Guidelines (2009);
- Australian and New Zealand Guidelines for the Protection of Fresh and Marine Waters (2000);
- QASSIT Acid Sulfate Soil Technical Manual Soil Management Guidelines (2014) and
- Australian Guidelines for Water Quality Monitoring and Protection (2000).

# 4 Investigation Findings

# 4.1 Site location

No. 60 Macleay Street, Narrawallee NSW, is located approximately 600m to the west of Narrawallee Beach and to the south of Narrawallee Creek . The property is formally known as Lot 145 of DP 718994. The property is a large property of about 3.2Ha extent and is bounded by Narrawallee creek to the north, undeveloped woodland to the east and west and residential properties along the southern boundaries. The area proposed for development is an area on the southern portion of the site adjacent to the site access and includes an area of about 650m<sup>2</sup>.

# 4.2 Geology

On-line geological mapping accessed using Minview, indicates the site is predominately underlain by Quaternary aged Coastal backbarrier flat deposits. This material is comprised of fine- to medium-grained quartz-lithic sand with



carbonate and humic components (marine-deposited), indurated sand, silt, clay, gravel, organic mud and peat as shown in Figure 1. This subsurface geology extends south and north of the proposed area for development by at least 100m.

To the south of the site, the surface is underlain by the Snapper Point Formation of the Shoalhaven Group. This unit is comprised of fine- to medium-grained sandstone, pebbly sandstone and polymictic pebble conglomerate (down sequence), medium- to coarse-grained sandstone with lithic pebbles and fragments, minor siltstone (up sequence); brachiopod, bivalve and bryozoan fossils. This unit is expected to underly the coastal deposits at depth.

To the east are beach sands (dunal deposits) associated with wind blown materials. To the north are organic rich estuarine swamp deposits.

# 4.3 Historical Aerial images

Historical aerial photography of the site (refer Figure 2) indicates that the site and the surrounding area was undeveloped in 1956. The site is located on an elevated area south of a creek and west of an infilled oxbow on the creek. At this time the site and surrounding land is mostly comprised of woodland which extends to a low lying near level coastal plain adjacent to the creek. To the north of the site, an old meander of the Narrawallee Creek is visible potentially traversing through the lower northern portion of the property.

By 1991, subdivision of the area to the south of and including the site has occurred. These works appear to include some localised filling of the old ox bow to the east of the site which is now a drainage feature. Some fill may have been locally placed on the site and on properties around the northern edge of Macleay Street.

From 2004 to the present day, development of residential properties has occurred to the south of the site. The site has remained relatively unchanged except for increase in density of vegetation (mainly trees).

# 4.4 ASS Maps

ASS is typically located at elevations below 5m AHD, but can be present as high as 12mAHD in rare occurrences. As the site is underlain by alluvium, it is expected that ASS could be present at depths below 5m AHD on the site. The site has an elevation of about 3m falling to 2m to the north of the proposed area for development.

The NSW Department of Land and Conservation (for Milton) indicates the site is within an area that has a low probability of ASS occurrence, with depths of potential ASS occurrence between 1m and 3m below the ground surface. Mapping indicates the area is denoted by Wa2 which is defined as follows:

• Wa2 – area with a low probability of ASS occurrence with soils deposited by 'Aeolain' (transported by wind) processes within a 'sandplain' with current surface elevation of 2 to 4m AHD.

This means that if ASS is present on the site, it is likely to occur at elevations of 2 m AHD (at or near the ground surface) to -1m AHD. An excerpt from this mapping is shown in Figure 3.

# 4.5 Surface Conditions

Observations of the site were made at the time of the site inspection. Photographs taken of the general site conditions are provided in Appendix C. These indicate:

- The site within the property appears to be raised above the areas to the north of the site and is at similar elevations to the neighbouring residential properties as shown on photographs 1 to 4.
- The site is relatively flat, with the embankment slopes falling moderately to the north from a height of about 3m down to level land south of the creek with an elevation of 2m and lower.
- The site is vacant of structures and is predominately grassed with some mature trees nearby.
- Land to the north of the site is level and is grassed with mature trees and shrubs throughout as shown on photograph 5.
- Some land to the north of the site had some visible waterlogged in a slight depression just north of the site as shown on photograph 3.



# 4.6 Subsurface Conditions

The subsurface investigation comprised the excavation of four boreholes to a depths of 2.0m below existing ground surface level. Engineering logs are provided in appendix D. The locations of the test sites are shown on Figure 4. It is noted that in parts the site has been filled. The investigation comprised of four (4) boreholes in total with sampling for ASS undertaken at 0.5m intervals or at changes in material types. It is noted that excavations for the proposed works are not expected to exceed 1.0m depth. The boreholes are named BH01 to BH04. The investigation indicates the site is underlain by the following materials:

- TOPSOIL: Silty SAND to clayey SAND; underlain by
- FILL: Sandy CLAY to sandy silty CLAY; underlain by
- **ALLUVIAL:** sandy clay to sandy silty CLAY.

# 4.7 Laboratory testing

The boreholes were sampled and field screened to determine if ASS was present in the soils underlying the site. Samples were collected at 0.5m intervals down to a total depth of 2m. This sampling was done in general accordance with the NSW EPA guidelines for ASS sampling. The exception to this was for the pool.

Excavations for the pool are deemed to be of limited depth (<0.5m) with the pool essentially constructed at or just below the ground surface. Consequently, in accordance with the Australian ASS sampling guidelines (which provides more appropriate current guidelines for ASS sampling and testing) based on no disturbance of the soil within this area below 1.0m depth, sampling and testing was not deemed required. The pool is expected to be located on piered foundations which do not result in the potential for any ASS soils present at depth to become oxidised. Since the field investigation was completed, the location of the pool has been moved to the west. The nearest sampling location in this area is Borehole BH02 which was taken to a depth of RL 0.8m (or about 0.5m below the base of the pool).

All samples were screened using the ASS Field Screening Procedure outlined in the ASSMAC (1998) Acid Sulfate Soils Manual. A summary of the results of acid sulfate soils field screening tests undertaken on samples of soil retrieved from the boreholes is summarised in **Table 4.2** below with laboratory certificates provided in Appendix E.

The ASS field screening did not identify any Actual ASS on the site. However, the ASS field screening identified some strong reactions during the testing with most of the samples showing a drop in pH greater than or equal to one (1). Some samples noted a drop in  $pH_{fox}$  to below 4, indicating a moderate potential for ASS to be present.

To determine the potential causes of acid generation, Chromium Suite testing was undertaken on a sample of soil (reference BH02 S3 1.0m depth). The results for this test are provided in Table 3.3 and in appendix E. This testing indicates some acidity (about 25% of the total acidity) is due to sulfur based compounds (which could be acid sulfate soil or other forms of sulfur), however these levels are very low. Other forms of acidity (such as humic material) are generating most of the acidity within the soil.



#### Table 4-1:Summary of ASS field screening laboratory results

|                  | Sampla       |                   |                     | Depation                                                            | 0                                                 |                                                  |                          | PASS indi                | PASS indicators                |                                |  |
|------------------|--------------|-------------------|---------------------|---------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------|--------------------------|--------------------------------|--------------------------------|--|
| Test Hole Number | Depth<br>(m) | pH <sub>(f)</sub> | pH <sub>(fox)</sub> | Keaction<br>(X slight, XX Moderate, XXX<br>strong, to XXXX extreme) | Δрн<br>pH <sub>(f)</sub> -<br>pH <sub>(Fox)</sub> | indicator<br>( pH <sub>f</sub> < 4) <sup>A</sup> | pHfox <sup>c</sup><br><3 | ∆pH <sup>B</sup><br>(>1) | Strong or very strong reaction | Potential for ASS <sup>D</sup> |  |
|                  | 0.5          | 5.4               | 3.5                 | XX                                                                  | 1.9                                               | X                                                | X                        | <b>\</b>                 | X                              | LOW                            |  |
| BUO1             | 1.0          | 4.9               | 3.4                 | Х                                                                   | 1.5                                               | X                                                | X                        | $\checkmark$             | X                              | LOW                            |  |
| BHUI             | 1.5          | 4.8               | 3.6                 | XXXX                                                                | 1.2                                               | X                                                | X                        | $\checkmark$             | ✓                              | MODERATE                       |  |
|                  | 2.0          | 4.9               | 3.6                 | XXXX                                                                | 1.3                                               | X                                                | X                        | $\checkmark$             | ✓                              | MODERATE                       |  |
|                  | 0.5          | 4.9               | 4.0                 | Х                                                                   | 0.9                                               | X                                                | X                        | X                        | X                              | LOW                            |  |
| <b>RHUUJ</b>     | 1.0          | 5.2               | 3.4                 | XXXX                                                                | 1.8                                               | X                                                | X                        | $\checkmark$             | ✓                              | MODERATE                       |  |
| DHVZ             | 1.5          | 5.4               | 3.7                 | XXXX                                                                | 1.7                                               | X                                                | X                        | $\checkmark$             | ✓                              | MODERATE                       |  |
|                  | 2.0          | 5.4               | 3.5                 | XXXX                                                                | 1.9                                               | X                                                | X                        | $\checkmark$             | ✓                              | MODERATE                       |  |
|                  | 0.5          | 5.1               | 3.7                 | XXXX                                                                | 1.4                                               | X                                                | X                        | $\checkmark$             | ✓                              | MODERATE                       |  |
| <b>RHUU</b> 2    | 1.0          | 5.0               | 3.5                 | XXX                                                                 | 1.5                                               | X                                                | X                        | $\checkmark$             | ✓                              | MODERATE                       |  |
| впоз             | 1.5          | 5.0               | 3.8                 | XXXX                                                                | 1.2                                               | X                                                | X                        | $\checkmark$             | ✓                              | MODERATE                       |  |
|                  | 2.0          | 5.2               | 3.7                 | XXXX                                                                | 1.5                                               | X                                                | X                        | $\checkmark$             | ✓                              | MODERATE                       |  |
|                  | 0.5          | 4.9               | 3.7                 | XXX                                                                 | 1.2                                               | X                                                | X                        | $\checkmark$             | $\checkmark$                   | MODERATE                       |  |
| PHO/             | 1.0          | 4.8               | 3.7                 | XXX                                                                 | 1.1                                               | X                                                | X                        | $\checkmark$             | $\checkmark$                   | MODERATE                       |  |
| DU104            | 1.5          | 5.3               | 4.2                 | XXXX                                                                | 1.1                                               | X                                                | X                        | $\checkmark$             | <b>√</b>                       | LOW                            |  |
|                  | 2.0          | 5.4               | 4.4                 | XXXX                                                                | 1.0                                               | X                                                | X                        | X                        | <b>√</b>                       | LOW                            |  |

Notes to table: A) This indicator is not used on its own as soils with high organic content can contain humic acid or manganese oxides which also produce a reaction;

B) where the pH(f) values is lower than 4, this is typically indicative of AASS being present on a site

C) As the  $\Delta pH$  increases, there is an increased probability that PASS is present.

D) The lower the  $pH_{fox}$  the greater the potential for PASS to be present. Where  $pH_{fox} < 3$  and there is a strong reaction and high  $\Delta pH$ , there is a high probability that PASS is present. Where the  $pH_{fox} < 4$  the result is less positive and further laboratory testing is required to determine the source of acid generation. Where  $pH_{fox} < 5$  the test is inconclusive, sulphides may be present either in small quantities or may be poorly reactive under quick field test conditions or the sample may contain carbonate which neutralises some or all acid production by oxidation. Equally the low value may be due to weak organic acids and there may be no sulphides present. Further testing to identify the cause of acid generation is recommended.

E) Samples which meet all the QASSIT indicators for PASS are assigned a high potential. Samples which meet some of the indicators for PASS are assigned a moderate potential. Samples which show an inconclusive result are assigned a low potential. It is noted that it is possible for some 'non-ASS soils' to generate acid and have all or some of the indicators of ASS. Further testing is required to assess the nature of acid generation.



## Table 4-2: Summary of Chromium Suite laboratory test results

| Test Location | Soil Type   | Depth<br>(m) | pH KCL | Actual<br>Acidity <sup>A</sup><br>%S (equiv)-<br>TAA | Cr<br>Reducible<br>Acidity<br>(% Sr) | Retained<br>Acidity <sup>C</sup><br>(% equiv S-S <sub>nas</sub> ) | - Acid Neutralising<br>Capacity ANCB<br>(% S) <sup>B</sup> | Net Acidity<br>(%S) | Fineness<br>Factor | Liming Rate<br>excluding ANC<br>(kg/t) |
|---------------|-------------|--------------|--------|------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|---------------------|--------------------|----------------------------------------|
| LOR           |             |              |        |                                                      | 0.02                                 | 0.02                                                              |                                                            | 0.02                |                    |                                        |
| BH02 S2 1.0m  | Sandy CLAY: | 1.0          | 5.3    | 0.03                                                 | 0.009                                | NA                                                                | NA                                                         | 0.04                | 1.5                | 1.7                                    |

Notes to table: LOR – level of reporting. NA – not applicable. A) only required where pH<sub>kci</sub> is < 5.5, B) only required where pH<sub>kci</sub> is >6.5 C) only required where pH<sub>kc</sub> <4



# 4.8 Conclusions

The NSW ASS guidelines require a formal treatment plan for ASS where the level of Net Acidity (% S) is greater than the following:

- Sands and loamy (clayey) sands: 0.03%.
  Sandy Loams (Sandy Clays) and light clays 0.06%
- Sandy Loams (Sandy Clays) and light clays
   Medium to heavy Clays
   0.1%
- Wedum to heavy clays 0.1%

The Chromium Suite ASS testing indicates Net Acidity (%S) on the site is typically 0.04% with that generated by sulfur report at 0.009%. These levels are below than the NSW EPA trigger level of 0.06% for the sandy clayey soils. Consequently, a formal management plan is not required for the site in terms of formal management of ASS. However, as the soils do show some acidity, it is recommended that the soils are treated with lime and classified as GSW in terms of disposal. Consequently, this management plan has been drafted to manage the acidic nature of the soils on the site. Soils should be limed if they are to be disturbed at a rate of 1.7kg/tonne.

# 5 Extent of Proposed Soil Disturbances

Terra Insight Pty Ltd understands that the proposed works includes construction of a residential building and a pool with excavations expected to be no greater than 1.0m depth with potential off-site disposal of soils. Foundations below 1.0m depth will be driven or screw piles with no disturbance to the subsurface soils which will result in their oxidation. Any material, excavated from the site, will require treatment and waste classification prior to disposal off site.

# 6 Acidic (and Acidic Sulfate) Soil Management Plan

The following management plan has been prepared to adequately manage the acidity risks posed by the disturbance of soils on the site during the construction phase. Based on the %S (equivalent) and %S based acidity detected within the soils and the estimated volume of soil to be disturbed (<100 tonnes) a High Level treatment plan – Category H – is deemed appropriate. The QASSIT (2014) guidelines indicates a 'High Level' management plan should include the advice on the following:

- More detailed plans of disturbance and detailed ASS investigation reports are provided to assessing authorities.
- Soils are treated with an amount of neutralising agent that will counter their existing plus potential acidity (up to the equivalent of 5 tonnes of fine CaCO3).
- The neutralising agent is thoroughly mixed with the soil.
- Bunding of the site using non-ASS material to divert run-on and collect all site runoff during earthworks.
- pH of any pools of water collected within a bund or sump (particularly after rain) is monitored and treated appropriately before release or reuse to keep pH in the range 6.5 to 8.5 (or as per site-specific conditions).
- All leachate from treatment pads and/or discharge water from excavations should be contained and must meet acceptable standards of pH, metal content (particularly iron and aluminium), and turbidity prior to release.
- A guard layer of neutralising material is applied to treatment pad surfaces to help intercept and neutralise leachate from ASS.

# 6.1 Extent of Proposed Soil Disturbances

Terra Insight Pty Ltd understands that the proposed works include construction of a residential building and pool. The works will require excavation to about 0.5m depth and will likely encounter acidic soil at this depth or lower. Methods that minimise exposure of the soils to oxidising conditions would be beneficial (such as screw piling or driven piles). Any excavated ASS material will require treatment and waste classification prior to disposal off site.

# 6.2 Training and Orientation

Training and orientation sessions shall be conducted for all Contractors' staff involved in the excavation, transport or handling of acidic soil. The sessions shall be designed to ensure that staff are aware of the acidic soil issues on the



site and are aware of their responsibilities in managing the acidic soil including any ASS. A handout suitable for issue to workers on site is provided in Appendix F.

# 6.3 Soil Treatment

Lime treatment rates of these soils were calculated according to their existing plus potential acidity. Based on these calculations, **an initial liming rate of 2kg/m<sup>3</sup>** of fine agricultural lime is recommended for all soils excavated on the site. We note that this liming rate includes a factor of safety of 1.5 to allow for incomplete mixing of the soils. Some additional lime may be required to adequately neutralise the material prior to disposal. The lime shall be added uniformly to the soils and mixed in well.

We note that the site is elevated above the water table. Any excavation of the soils will increase their exposure to the air. The lime shall be added uniformly to the soils and mixed in well. The following liming procedures (or other equivalent) should be undertaken:

- Where the soils are treated off site, a treatment pad should be designed in general accordance with NSW EPA guidelines (refer Figure 5). Where the soils are treated on site, temporary stockpiling methods can be adopted.
- A guard layer of neutralising agents should be provided at the base of the treatment pad prior to the addition of ASS material. The guard layer should be employed as a precaution to neutralise acidity that has not been adequately treated during the soil neutralisation process.
- ASS material shall be spread in thin (<200mm) layers;
- Addition of lime by hand followed by mixing, using rotators, backhoe bucket, auger or equivalent; and
- Treatment of stockpiled sandy ASS material should commence within 12 hours of the material being excavated.

The type and amount of lime to be applied will be such that a neutralising value (NV) of 100 can be achieved. NV relates to the purity of the lime and an NV of 100 is required to ensure that the lime is effective in neutralising the potential acid. Fine powdered agricultural lime (CaCO<sub>3</sub>) generally has an NV of 90% to 100% whilst other manufactured forms of lime can have an NV as low as 80%. Where NV is below 100, the amount of lime will have to be adjusted accordingly.

Where off site is disposal is required, as the volume of soil is likely to be minimal, a skip bin could also be used to store and treat the material but must be a sealed bin or protected from rainfall.

# 6.4 Temporary Stockpiling

Excavated soils should be either placed in temporary stockpiles or transported directly to a specially prepared treatment area for liming. The treatment area should be constructed in accordance with the NSW EPA guidelines (refer Figure 5 for treatment pad details). Alternatively, for small volumes, the soils could be placed in covered skip bins or temporary stockpiled on a bunded plastic sheeted area. Where temporary stockpiling exceeds three nights (this may occur on or off the site):

- Soils will be stockpiled at least 40m from stormwater drains or creeks and if possible, placed in a topographically high area to avoid inundation following heavy rain;
- The soil stockpiles will be bunded (bunds to be of non-ASS materials), and placed on strong impermeable plastic sheeting, and provision made for collection of surface runoff and appropriate sediment, erosion and dust controls;
- The stockpiles will be kept moist and covered with plastic to help slow the oxidation process;
- The stockpiles will also be observed for obvious signs of oxidation, such as jarosite staining;
- Monitoring of the stockpile and associated run-off water will be carried out for the duration of the work by personnel trained in the identification of acid sulfate soil;

Appropriate stormwater and sediment controls should be in place. Where monitoring of the leachate indicates low pH, the addition of lime will be required prior to discharge. If untreated ASS soils are to be stockpiled for a period exceeding 3 nights, further advice shall be sort from a competent ASS professional. Treated ASS material should not be stockpiled for more than 1 week.



# 6.5 Temporary excavations

Temporary excavations should remain open for the minimum amount of time that is feasibly practical given the nature of the proposed work. Other than the main excavations for services, all excavations should not remain open for extended periods of time (e.g. > 48 hours).

The sides and base of the trenches and excavations should be sprinkled with lime at a rate of 2kg/m<sup>2</sup> to minimise the potential for oxidation of the exposed soils.

Materials excavated from the site must be replaced back within the 48-hour period. Nominal treatment of the excavated materials at a rate of  $2 \text{kg} / \text{m}^3$  of soil shall be implemented.

# 6.6 Permanent Excavations

Treatment of permanent excavations will need to consider the environment within which the site is located. It is common for flora and fauna, within areas impacted by ASS, to have adapted to a level of acidity. Excessive neutralisation of soils within these areas can result in alkaline conditions which can negatively impact these environments. It is therefore recommended that the sides and base of excavations are lightly coated with lime at a rate of 2kg/m<sup>2</sup> to minimise the potential for oxidation of the exposed soils which could result in acid run off where the excavated slopes are battered.

# 6.7 Water Quality Control

The zones of excavation shall be bunded to minimise the potential for stormwater to flow into the site.

Storm water and groundwater that flows into the active excavation works or onto the disturbed areas of the site will need to be treated prior to release.

There shall be no uncontrolled discharge of waters from the site. Sufficient bunding of the site using none ASS material is required. Monitoring of the water collected in the bunded areas shall be tested before discharge. **Table 6-1** outlines the physio-chemical parameters to be tested before discharge.

|                  | Parameter        | Criteria                                                            | Frequency                               |  |  |
|------------------|------------------|---------------------------------------------------------------------|-----------------------------------------|--|--|
| Dewatering Phase | рН               | 6.5 – 8.5                                                           | Daily when waters collected in the      |  |  |
|                  | EC               | Background plus 10%                                                 | excavation are being released from site |  |  |
|                  | Turbidity        | SS measurements are<br>to be calibrated with the<br>daily turbidity |                                         |  |  |
|                  | Suspended Solids | < 50 milligrams per litre                                           | Weekly when discharging                 |  |  |

Table 6-1:-Surface Water Monitoring

Any waters collected in the excavation or during the dewatering activities shall be tested for pH daily before dewatering. If the recorded pH of any sample is less than 6.5, it shall be immediately retested. If the pH is again below 6.5, the pH shall be adjusted by the application of hydrated lime until it is in the range 6.5 to 7.5. Where the pH is less than 4.5 or more than one unit below baseline levels, the ASS Consultant shall be engaged within 6 hours to review the site practices and monitoring results and to recommend remedial measures.

If turbidity or suspended solids do not meet the criteria, the water shall be treated using an approved flocculent in accordance with the Maroon Manual (Version 1.1).



# 6.8 Rate for Emergency Liming

# 6.8.1 Emergency Liming of Soil

Where emergency liming is required and additional laboratory testing results are not readily available, the liming of acid sulfate soils may be carried out at a rate of about 2kg lime per tonne of soils. The emergency liming rate is a temporary measure to lower the immediate risk to the environment and may not be sufficient for complete neutralisation.

# 6.8.2 Emergency Liming of Water

Where emergency liming of water is required either from dewatering or run-off from stockpiles, and laboratory testing results are not available, liming of acidic water may be carried out at a rate such that residual lime is present and the pH of the water is not less than 6. The emergency liming rate is a temporary measure to lower the immediate risk to the environment and may not be sufficient for complete neutralisation.

# 6.9 ASS Validation

In order to demonstrate that appropriate quantities of lime have been used as specified in this ASSMP, a lime register shall be maintained by the Contractor. The register shall list the lime delivered to the site, verified by delivery dockets, and where the lime has been used. The lime usage shall quantify areas limed and soil volumes treated, liming rates and quantities of lime used.

A minimum of three validation tests for the site works shall be undertaken on the treated ASS. The validation testing shall consist of the measurement of TAA, the measurement of Scr, the pH of the soil after peroxide oxidation (pHfox) and the measurement of excess neutralising capacity to pH 6.5. A soil shall be deemed to be effectively treated when total acidity calculated as TAA plus the acidity equivalent of the measured Scr is less than 1.5 times the measured acid neutralising capacity and pHfox is greater than 6.5.

# 6.10 Disposal of Untreated ASS Below Water Table

Depending on the timing of the works, stockpiled ASS can be disposed of without treatment provided the following management procedures are followed:

- Visual assessment of temporary stockpiling and pH monitoring does not show evidence of oxidation; and
- The excavated ASS is disposed of below the ground water table within a landfill licenced to accept waste classified as Acid Sulfate Soils.

# 6.11 Disposal of treated ASS

Once treated with lime, the soils may be disposed of to an appropriately licensed landfill following a waste classification. The waste classification and disposal should be undertaken in accordance with relevant standards and requirements, including the NSW DECCW (2009) Waste Management Guidelines. Following offsite disposal of the acid sulfate soils, no further testing is required for acid sulfate soil purposes.

## 6.12 Reuse of Treated Soils Onsite

The following monitoring programme (or other approved equivalent) is recommended for lime treated material where the material is to be reused on site for structural or general filling above the water table, prior to its placement:

- Monitoring of soil pH weekly for two weeks. The monitoring frequency may be revised based on the results of the monitoring; and
- Collection and field screening/laboratory testing of soil samples collected from the stockpile to assess the effectiveness of the liming procedure.

Material may be reused on site above the water table once the above criteria are met.



# 6.13 ASS Validation

In order to demonstrate that appropriate quantities of lime have been used as specified in this ASSMP, a lime register shall be maintained by the Contractor. The register shall list the lime delivered to the site, verified by delivery dockets, and where the lime has been used. The lime usage shall quantify areas limed and soil volumes treated, liming rates and quantities of lime used.

A minimum of 1 validation tests per 250m<sup>3</sup> or one test per truck/bin load shall be undertaken on the treated ASS. It is estimated that about 5 to 10 test may be required. The validation testing shall consist of the measurement of TAA, the measurement of Scr, the pH of the soil (Kcl) and the measurement of excess neutralising capacity. A soil shall be deemed to be effectively treated when total acidity calculated as TAA plus the acidity equivalent of the measured Scr is less than 1.5 times the measured acid neutralising capacity and pH(KCL) is greater than 6.5.

# 6.14 Monitoring and Reporting

Complete records of testing, treatment and monitoring should be kept by the contractor including the lime register.







# Site Geology

Site L

|        | Symbol        | Group               | Unit                                             |                                       |                                               | Li                                                          | thology                                                                                                                                           |                  |               |
|--------|---------------|---------------------|--------------------------------------------------|---------------------------------------|-----------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
|        | QH_es         | -                   | Estuarine swamp                                  | Organic-rich                          | mud, peat, c<br>fine- to r                    | ay, silt, very f<br>nedium-graine                           | ine- to fine-grained sand (marine-deposited),<br>d sand (fluvially deposited)                                                                     |                  |               |
|        | QP_bf         | -                   | Coastal deposits -<br>backbarrier flat<br>facies | Fine- to me<br>(marir                 | dium-grained<br>ne-deposited)                 | quartz-lithic s<br>, indurated san                          | sand with carbonate and humic components id, silt, clay, gravel, organic mud, peat                                                                |                  |               |
|        | Pshs          | Shoalhaven<br>Group | Snapper Point<br>Formation                       | Fine- to r<br>conglomer<br>pebbles ar | medium-grain<br>ate (down see<br>nd fragments | ned sandstone,<br>quence), mediu<br>minor siltstor<br>bryoz | pebbly sandstone and polymictic pebble<br>im- to coarse-grained sandstone with lithic<br>ne (up sequence); brachiopod, bivalve and<br>oan fossils |                  |               |
|        |               | description         |                                                  |                                       | approved                                      | date                                                        | N                                                                                                                                                 |                  |               |
| sion   | Site location | Site location       |                                                  |                                       | KEG                                           | 7/12/2021                                                   |                                                                                                                                                   |                  | TERRA INSIGHT |
| revisi |               |                     |                                                  |                                       |                                               |                                                             |                                                                                                                                                   | scale            | NTS           |
|        |               |                     |                                                  |                                       |                                               |                                                             | P X                                                                                                                                               | original<br>size | A3            |

|     | e<br>e<br>cation                  |                     |
|-----|-----------------------------------|---------------------|
|     | Planning Lawyer                   | Solutions           |
| pr  | oject:<br>Acidic Soil (sulfate) M | anagement Plan      |
|     | No. 60 Macleay Stre               | et Narrawallee      |
| tit | le: Site Loca                     | tion                |
| pr  | oject no: TERRA21-502             | figure no: FIGURE 1 |



**Historical Imagery** 

|        | description               | drawn | approved | date      | N |                  |               |
|--------|---------------------------|-------|----------|-----------|---|------------------|---------------|
| n      | Historical Aerial Imagery | XJ    | KEG      | 7/12/2021 |   |                  | TERRA INSIGHT |
| evisio |                           |       |          |           |   |                  |               |
|        |                           |       |          |           |   | scale            | NTS           |
|        |                           |       |          |           |   | original<br>size | A3            |

| client: Planning Lawyer Solutions                                                    |                        |  |  |  |  |  |
|--------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|
| oject:<br>Acidic Soil (sulfate) Management Plan<br>No. 60 Macleay Street Narrawallee |                        |  |  |  |  |  |
| title: Historica                                                                     | le: Historical Imagery |  |  |  |  |  |
| project no: TERRA21-502                                                              | figure no: FIGURE 2    |  |  |  |  |  |



# Milton Acid Sulfate Soil Mapping Excerpt

|       | description               | drawn | approved | date      | N                  |               | clien  |
|-------|---------------------------|-------|----------|-----------|--------------------|---------------|--------|
| c     | Acid Sulfate Soil Mapping | XJ    | KEG      | 5/11/2021 |                    | TERRA INSIGHT | proje  |
| visio |                           |       |          |           | $\mathbf{\Lambda}$ |               |        |
| Ð     |                           |       |          |           | scale              | NTS           | title: |
|       |                           |       |          |           | original<br>size   | A3            | proje  |

| nt:                  | Planning Law                       | yer Solutions                         |      |
|----------------------|------------------------------------|---------------------------------------|------|
| ject:<br>Acidi<br>No | ic Soil (sulfate<br>. 60 Macleay S | ) Management Pla<br>treet Narrawallee | an   |
| :                    | Acid Sulfate                       | Soil Mapping                          |      |
| ject no: TERRA21-    | 502                                | figure no: FIGUR                      | RE 4 |
|                      |                                    |                                       |      |

# KEY

| Map Class Description Depth to Acid Sulfate Soil Materials                                                                                                         |                      | th to Acid Sulfate Soil Materials                                                       | Environmental Risk                                                                                                                                                                                                                                                    |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| HIGH PROBABILITY                                                                                                                                                   | Below water<br>level | Bottom sediments.                                                                       | Severe environmental risk if bottom sediments are disturbed by activities such as dredging.                                                                                                                                                                           |  |  |  |
| material within the soil profile.                                                                                                                                  |                      | At or near the ground surface.                                                          | Severe environmental risk if acid sulfate soil materials are disturbed by activities such as shallow drainage, excavation or clearing.                                                                                                                                |  |  |  |
| The environment of deposition has been suitable for<br>the formation of acid sulfate soil materials.                                                               |                      | Within 1 metre of the ground surface.                                                   | Severe environmental risk if acid sulfate soil materials are disturbed by activities such as shallow drainage, excavation or clearing.                                                                                                                                |  |  |  |
| Acid sulfate soil materials are widespread or sporadic<br>and may be buried by alluvium or windblown<br>sediments.                                                 |                      | Between 1 and 3 metres below the ground surface.                                        | Environmental risk if acid sulfate soil materials are disturbed by activities such as deep excavation for pipelines, dams or deep drains.                                                                                                                             |  |  |  |
|                                                                                                                                                                    |                      | Greater than 3 metres below the ground surface.*                                        | Environmental risk if acid sulfate soil materials are disturbed by activities such as deep excavations, eg, large structure foundations or deep                                                                                                                       |  |  |  |
| LOW PROBABILITY                                                                                                                                                    | Below water<br>level | Bottom sediments.                                                                       | The majority of these landforms are not expected to contain acid sulfate soil materials. Therefore, land management is generally not affe acid sulfate soils.                                                                                                         |  |  |  |
| materials within the soil profile.                                                                                                                                 |                      | At or near the ground surface.                                                          | However, highly localised occurrences may be found, especially near boundaries with environments with a high probability of occur<br>Disturbance of these soil materials will result in an environmental risk that will vary with elevation and depth of disturbance. |  |  |  |
| The environment of deposition has generally not been<br>suitable for the formation of acid sulfate soil materials.<br>Soil materials are often Pleistocene in age. |                      | Within 1 metre of the ground surface.                                                   |                                                                                                                                                                                                                                                                       |  |  |  |
| Acid sulfate soil materials, if present, are sporadic and<br>may be buried by alluvium or windblown sediments.                                                     |                      | Between 1 and 3 metres below the<br>ground surface.                                     |                                                                                                                                                                                                                                                                       |  |  |  |
|                                                                                                                                                                    |                      | Greater than 3 metres below the ground<br>surface.*                                     |                                                                                                                                                                                                                                                                       |  |  |  |
| NO KNOWN OCCURRENCE<br>Acid sulfate soils are not known or expected to occur<br>in these environments.                                                             |                      | No known occurrences of acid sulfate soil materials.                                    | Land management activities not likely to be affected by acid sulfate soils.                                                                                                                                                                                           |  |  |  |
| DISTURBED TERRAIN                                                                                                                                                  |                      | Disturbed terrain may include filled areas,<br>general urban development or constructio | which often occur during reclamation of low lying swamps for urban development. Other disturbed terrain includes areas which have been n of dams or levees. Soil investigations are required to assess these areas for acid sulfate potential.                        |  |  |  |

# Deep occurrences of acid sulfate soil materials not able to be confirmed by field inspection and sampling

| Landform | Process Class      |   | Landform E         | lement |                      | EI       | evation#       |
|----------|--------------------|---|--------------------|--------|----------------------|----------|----------------|
| W        | Aeolian            | b | Backplain          | t      | Levee toe            | 0        | 0-1 m          |
| Α        | Alluvium           | k | Backswamp          | 0      | Ox-bow               | 1        | 1-2 m<br>2-4 m |
| В        | Beach              | m | Bottom sediments   | р      | Plain                | 4        | >4 m           |
| E        | Estuarine          | n | Channel            | a      | Sandplain            | Addition | al Descriptive |
| L        | Lacustrine         | d | Dune               | s      | Swamp                | (p)      | Pleistocene    |
| S        | Swamp              | r | Interbarrier swamp | у      | Splay                | (s)      | Acidic scald   |
|          |                    | i | Intertidal flat    | u      | Supratidal flat      |          |                |
|          |                    | g | Lagoon             | w      | Swale                |          |                |
| Χ        | Disturbed Terrain* | I | Levee              | c      | Tidal creek          |          |                |
|          |                    |   |                    |        |                      |          |                |
| X        | Disturbed Terrain* | g | Lagoon<br>Levee    | w<br>c | Swale<br>Tidal creek |          |                |

\*Elevation levels given on the map refer to the elevation of the ground surface at the time of mapping. Depending on the nature of the disturbance, these elevation levels may or may not represent the original ground surface elevation

# Approximate AHD

|        | nature of the disturbance, these elevation levels may of may not represent the original | inal ground sunace e | nevation. |           |                  |     |               |                 |                  |                     |
|--------|-----------------------------------------------------------------------------------------|----------------------|-----------|-----------|------------------|-----|---------------|-----------------|------------------|---------------------|
|        | description                                                                             | drawn                | approved  | date      |                  | •   |               | client:         | Planning Lav     | vyer Solutions      |
| u      | ASS Key                                                                                 | XJ                   | KEG       | 5/11/2021 |                  | 3   | TERRA INSIGHT | project:        | Acid Sulfate S   | oil Investigation   |
| evisio |                                                                                         |                      |           |           |                  |     |               |                 | No. 60 Macleay S | Street Narrawallee  |
| 2      |                                                                                         |                      |           |           | scale            | NTS |               | title:          | Acid Sulfate     | Soil Mapping        |
|        |                                                                                         |                      |           |           | original<br>size | A3  |               | project no: TEI | RRA21-502        | figure no: FIGURE 3 |

# Acid Sulfate Soil Mapping Key

|          | Typical Landform Types                                                                                                                                                               |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Bottom sediments of lakes, lagoons, tidal creeks, rivers and<br>estuaries.                                                                                                           |
|          | Estuarine swamps, intertidal flats and supratidal flats.                                                                                                                             |
|          | Low alluvial plains, estuarine sandplains, estuarine swamps,<br>backswamps, and supratidal flats.                                                                                    |
|          | Alluvial plains, alluvial swamps, alluvial levees and sandplains.                                                                                                                    |
| dams.    | Elevated levees and sandplains, alluvial plains and alluvial<br>swamps in estuarine reaches of catchments.                                                                           |
| urrence. | Elevated alluvial plains and levees dominated by fluvial<br>sediments. Plains and dunes dominated by aeolian soils.<br>Pleistocene plains. Lacustrine and alluvial bottom sediments. |
|          | Bedrock slopes, elevated Pleistocene and Holocene dunes<br>and elevated alluvial plains.                                                                                             |



**Test Site Locations** 

# Legend



|        | description        | drawn | approved | date      | Ν | TERRA INSIGHT    |     | client:           | Planning Law                            | yer Solutions                            |
|--------|--------------------|-------|----------|-----------|---|------------------|-----|-------------------|-----------------------------------------|------------------------------------------|
| vision | Test Site Location | XJ    | KEG      | 5/11/2021 |   |                  |     | project:          | cidic (Sulfate) Soi<br>No. 60 Macleay S | il Management Plan<br>Street Narrawallee |
| Ге     |                    |       |          |           |   | scale            | NTS | title:            | Test Site                               | Locations                                |
|        |                    |       |          |           |   | original<br>size | A3  | project no: TERRA | 21-502                                  | figure no: FIGURE 4                      |



|   | description         | drawn | approved | date       |                     |
|---|---------------------|-------|----------|------------|---------------------|
| = | ASSMP Treatment Pad | KEG   | KEG      | 27/03/2019 | TERRA INSIC         |
|   |                     |       |          |            |                     |
| Ð |                     |       |          |            | scale NTS           |
|   |                     |       |          |            | original<br>size A3 |

| client:     | Planning Lawyer Solutions                                                  |                     |  |  |  |  |  |
|-------------|----------------------------------------------------------------------------|---------------------|--|--|--|--|--|
| project:    | Acidic Soil (sulfate) Management Plan<br>No. 60 Macleay Street Narrawallee |                     |  |  |  |  |  |
| title:      | Treatment Pad Cross-Section                                                |                     |  |  |  |  |  |
| project no: | TERRA21-502                                                                | figure no: FIGURE 5 |  |  |  |  |  |



# Appendix A: Your Report



These notes have been prepared to help you understand the advice provided in Your Report and its limitations.

### Your Report is based on what you tell us

Your Report has been developed based on the information you have provided such as the scope and size of your project. It applies only to the site investigated. If there are changes to the proposed works, then the advice provided within Your Report may need to be reviewed

### Your Report is written with your needs in mind

The advice provided within Your Report is also not relevant to another purpose other than that originally specified at the time the report was issued. Please seek advice from Terra Insight before you share Your Report with another third party – except for the purpose for which the report was written.

Terra Insight assumes no responsibility and will not be liable to any other person or organisation for, or in relation to, any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in Your Report.

### Your Report is based on what we observed

The advice provided within Your Report assumes that the site conditions, revealed through selective point sampling (undertaken in accordance with normal practices and standards) at a particular point in time, are indicative of the actual conditions on your site. However, the nature of the materials underlying your site is affected by natural processes and the activity of man. Under no circumstances can it be considered that these findings represent the actual state at all points. The subsurface conditions may vary significantly on the other parts of the site, particularly where no nearby sampling and testing work has been carried out.

As a result conditions on your site can change with time; they can also vary spatially. As a result, the actual conditions encountered may differ from those detailed within Your Report. Although nothing can be done to change the actual site conditions which exist, steps can be taken to gain a better understanding of the subsurface conditions underlying your site and reduce the potential for unexpected conditions to be encountered

The advice within Your Report also relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it. Only Terra Insight is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If the details of your project have changed, the site conditions have changed or a significant amount of time as elapsed since our report was written, the advice provided within Your Report may need to be reviewed.

### Your Report has been written by a Professional

The report has been prepared using accepted procedures and practices of the consulting profession at the time it was prepared, and the opinions, recommendations and conclusions set out in the report are made in accordance with generally accepted principles and practices of that profession.

### Your Report is better when it is kept together

Your Report presents all the findings of the site assessment and should not be copied in part or altered in any way. Keeping Your Report intact reduces the potential for yourself or other design professionals to misinterpret the report.

## Your Geo-Environmental Report

If Your Report is for geotechnical purposes only, it will not relate any findings, conclusions, or recommendations about the potential for hazardous materials to exist at the site unless you have specifically asked us to do so. If your report is written for Geo-Environmental purposes the following should be noted in addition to the above:

- Advancements in professional practice regarding contaminated land and changes in applicable statues and/or guidelines may affect the validity of this
  report. Consequently, the currency of conclusions and recommendations in Your Report should be verified if you propose to use this report more than
  6 months after its date of issue;
- Your Report is based on information gained from environmental conditions (including assessment of some or all of soil, groundwater, vapour and surface water) and supplemented by reported data of the local area and professional experience. The assessment has been scoped with consideration to industry standards, regulations, guidelines and your specific requirements, which includes budget and timing;
- The characterisation of site conditions is an interpretation of information collected during assessment, in accordance with industry practice. Any
  interpretation in Your Report is not a complete description of all material on or in the vicinity of the site, due to the inherent variation in spatial and
  temporal patterns of contaminant presence and impact in the natural environment.
- We may have relied on data and other information provided by you and other qualified individuals in preparing Your Report. We have not verified the
  accuracy or completeness of such data or information except as otherwise stated in Your Report. For these reasons Your Report must be regarded as
  interpretative, in accordance with industry standards and practice, rather than being a definitive record.
- For each purpose, a tailored approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is
  to identify, and if possible quantify, risks that both recognised and potential contamination posed in the context of the agreed purpose. If the proposed
  use of the site changes, the assessment may no longer be valid and will need to be reviewed.

\* For further information on this aspect reference should be made to "Guidelines for the Provision of Geotechnical information in Construction Contracts" published by the Institution of Engineers Australia, National headquarters, Canberra, 1987.



# Appendix B: Proposed Plans

|                                                                                                                                                                                                                                                                                           |                                          |                                                               |                                                                                               | 17m ASSE<br>PROTECT | ET<br>TION ZONE |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|-----------------|
|                                                                                                                                                                                                                                                                                           |                                          | Rev<br>Bou                                                    | ISED BUILDING ENVELOPE LINE AND<br>NDARY OF R2 LAND ZONING<br>11990<br>5<br>(4)<br>(3)<br>(2) |                     |                 |
|                                                                                                                                                                                                                                                                                           |                                          |                                                               |                                                                                               |                     |                 |
|                                                                                                                                                                                                                                                                                           |                                          |                                                               |                                                                                               |                     |                 |
| NOTE:<br>CHECK ALL DIMENSIONS ON SITE<br>BEFORE COMMENCING FABRICATION.<br>USE FIGURED DIMENSIONS AND DO<br>NOT SCALE OFF THE DRAWINGS.<br>COPYRIGHT: THIS DESIGN &<br>DRAWING ARE NOT PERMITTED TO<br>BE REPRODUCED WITHOUT THE<br>PERMISSION OF THE OFFICE OF<br>SMYTH & SMYTH PTY LTD. | REVDATEA22.10.2021B10.11.2021C12.11.2021 | LEC REVISION DRAFT<br>APZ ADJUSTED<br>COUNCIL CONTENTION AMEN | DETAILS<br>DMENTS                                                                             |                     |                 |











| BOUNDARY MASONRY WALL<br>SHOWN DASHED                   |  |
|---------------------------------------------------------|--|
| M HEIGHT LINE AT GRID LINE A                            |  |
| M HEIGHT LINE AT GRID LINE A                            |  |
| 5M HEIGHT LINE AT GRID LINE A                           |  |
| 5M HEIGHT LINE AT GRID LINE A                           |  |
| 5M HEIGHT LINE AT GRID LINE A                           |  |
| 5M HEIGHT LINE AT GRID LINE A                           |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
| an We will an We will an I'm                            |  |
| CO MR                                                   |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
| RN ELEVATION                                            |  |
|                                                         |  |
| date:         22.10.2021         scale:         1 : 100 |  |
| drawn: JY checked: DS                                   |  |
| north 933 DA201 sheet no.                               |  |



| OTE:                                                  | REV | DATE       | DETAILS                       |
|-------------------------------------------------------|-----|------------|-------------------------------|
| HECK ALL DIMENSIONS ON SITE                           | A   | 22.10.2021 | LEC REVISION DRAFT            |
| SE FIGURED DIMENSIONS AND DO                          | В   | 12.11.2021 | COUNCIL CONTENTION AMENDMENTS |
| OT SCALE OFF THE DRAWINGS.<br>OPYRIGHT: THIS DESIGN & |     |            |                               |
|                                                       |     |            |                               |
| ERMISSION OF THE OFFICE OF                            |     |            |                               |
| MYTH & SMYTH PTY LTD.                                 |     |            |                               |
|                                                       |     |            |                               |





this sheet:







JUNE 21 - 9AM



JUNE 21 - 12PM NO PROPOSED NEW SHADOWS CAST OVER NEIGHBOUR'S OPENINGS



JUNE 21 - 3PM NO PROPOSED NEW SHADOWS CAST OVER NEIGHBOUR'S OPENINGS

| NOTE:                                                                                                              | REV | DATE       | DETAILS                       |
|--------------------------------------------------------------------------------------------------------------------|-----|------------|-------------------------------|
| CHECK ALL DIMENSIONS ON SITE                                                                                       | А   | 22.10.2021 | LEC REVISION DRAFT            |
| USE FIGURED DIMENSIONS AND DO                                                                                      | В   | 08.11.2021 | LEC REVISION DRAFT            |
| COPYRIGHT: THIS DESIGN &                                                                                           | С   | 12.11.2021 | COUNCIL CONTENTION AMENDMENTS |
| DRAWING ARE NOT PERMITTED TO<br>BE REPRODUCED WITHOUT THE<br>PERMISSION OF THE OFFICE OF<br>SMYTH & SMYTH PTY LTD. |     |            |                               |





JUNE 21 - 10AM



JUNE 21 - 1PM NO PROPOSED NEW SHADOWS CAST OVER NEIGHBOUR'S OPENINGS

NO. 62 MACLEAY STREET NO. 64 MACLEAY STREET

# **KEY PLAN** 1 : 500





JUNE 21 - 11AM

JUNE 21 - 2PM NO PROPOSED NEW SHADOWS CAST OVER NEIGHBOUR'S OPENINGS

| OWS CAST ON NO. |       | date: 22.10.2021 | scale: 1 : 500 |          |
|-----------------|-------|------------------|----------------|----------|
| CLEAY STREET    |       | drawn: JY        | checked: DS    |          |
|                 |       |                  |                |          |
|                 |       | 033              | ΠΔ/11          | C        |
|                 | north | project no.      | sheet no.      | revision |



# Appendix C: Site Images

Photograph 1: View of the site looking west along the elevated back barrier berm.



Photograph 3: View looking south-west from lower portion of property towards the site with water ponding.

|       | description | drawn | approved | date       |
|-------|-------------|-------|----------|------------|
| c     | Plate1      | XJ    | KEG      | 19/11/2021 |
| visio |             |       |          |            |
| ē     |             |       |          |            |
|       |             |       |          |            |



Photograph 2: View looking north-east along the site.



Photograph 4: View looking south-east looking towards the site.

|                  |               | client |
|------------------|---------------|--------|
| <                | TERRA INSIGHT | proje  |
| scale            | NTS           | Title  |
| original<br>size | A3            | proje  |

| nt:        | Planning Lawyer Solutions                                            |            |  |
|------------|----------------------------------------------------------------------|------------|--|
| ect:       | Acid Sulfate Soil Investigation<br>No. 60 Macleay Street Narrawallee |            |  |
| tle        | Images of the site                                                   |            |  |
| ect no: TE | RRA21-502                                                            | Plate no:1 |  |



Photograph 5: View looking north at level area.



Photographs 7: Material encountered in BH02.



Photograph 6: Material encountered in BH01.



Photograph 8: Natural material encountered on DCP tip.

| description | drawn | approved | date                |   |               | lient: Planning La         |
|-------------|-------|----------|---------------------|---|---------------|----------------------------|
| late2       | XJ    | KEG      | 19/11/2021 TERRA IN | Т | TERRA INSIGHT | oroject:<br>Acid Sulfate S |
|             |       |          |                     |   |               | No. 60 Macleay             |
|             |       |          |                     |   | NTS           | Title Images               |
|             |       |          |                     |   | A3            | project no: TERRA21-502    |



# Appendix D: Engineering Logs



# FIELD DECRIPTIONS OF SOILS

| FIELD IDENTIFICATION PROCEDURES (Excluding particles larger than 60 mm and basing fractions on estimated mass) |                                                                                                                                           |                                                                                  |             |                                                                                  |                                                        | USC               | PRIMARY NAME  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------|--------------------------------------------------------|-------------------|---------------|
| ls<br>trion is                                                                                                 |                                                                                                                                           | Wide r                                                                           |             | ange in grain size and substantial amounts of all intermediate particle sizes    |                                                        | GW                | GRAVEL        |
| of materia<br>mm                                                                                               | /ELS<br>coarse fra<br>1 2.36 mm                                                                                                           | CLE<br>GRAN<br>(Little<br>fine                                                   | Predomir    | Predominantly one size or a range of sizes with more intermediate sizes missing. |                                                        | GP                | GRAVEL        |
| an 65% c<br>n 0.075 r                                                                                          | GRAV<br>1an half of<br>1arger thar                                                                                                        | /ELS<br>FINES<br>ciable<br>int of<br>es)                                         | Non-plas    | tic fines (for identificat                                                       | ion procedures see ML below)                           | GM                | SILTY GRAVEL  |
| S More th<br>larger tha                                                                                        | More th                                                                                                                                   | GRA/<br>WITH I<br>Appre<br>amou                                                  | Plastic fir | nes (for identification p                                                        | procedures see CL below)                               | GC                | CLAYEY GRAVEL |
| ED SOILS<br>3 mm is l                                                                                          | raction                                                                                                                                   | AN<br>5 (Little<br>fines)                                                        | Wide ran    | ge in grain sizes and s                                                          | substantial amounts of all intermediate sizes          | SW                | SAND          |
| GRAIINE<br>ss than 6                                                                                           | GRAIINE<br>s than 6,<br>JDS<br>f coarse fr<br>an 2.36 m                                                                                   | Predominantly one size or a range of sizes with some intermediate sizes missing. |             |                                                                                  | SP                                                     | SAND              |               |
| COARSE                                                                                                         | OARSE<br>les<br>SAI<br>than half c<br>smaller th                                                                                          | than hair of<br>s smaller th<br>VDS<br>TH<br>VES<br>eciable<br>ant of<br>es)     | Non-plas    | Non-plastic fines (for identification procedures see ML below).                  |                                                        | SM                | SILTY SAND    |
| 0                                                                                                              | More                                                                                                                                      | SA<br>W<br>(Appr<br>amo                                                          | Plastic fir | lastic fines (for identification procedures see CL below).                       |                                                        | SC                | CLAYEY SAND   |
| of material<br>75 mm                                                                                           | IDENTIFICATION PROCEDURES ON FRACTIONS <0.2 mm<br>(Note a 75Um particle is about the smallest particle that is visible to the naked eye.) |                                                                                  |             |                                                                                  |                                                        |                   |               |
| 35%<br>n 0.0                                                                                                   | (0)                                                                                                                                       | DRY STRENG                                                                       | GTH         | DILATANCY                                                                        | TOUGHNESS                                              | USC               | PRIMARY NAME  |
| than<br>r tha                                                                                                  | CLAY:<br>It less                                                                                                                          | None to Lov                                                                      | N           | Quick to slow                                                                    | None                                                   | ML                | SILT          |
| hore.<br>malle                                                                                                 | S & C<br>id lim<br>than 5                                                                                                                 | Medium to Hi                                                                     | gh          | None                                                                             | Medium                                                 | CL                | CLAY          |
| SOILS N<br>mm is sr                                                                                            | SILT                                                                                                                                      | Low to mediu                                                                     | JM          | Slow to very slow                                                                | Low                                                    | CL                | ORGANIC SILT  |
| JED :                                                                                                          | ED 9<br>(S 163 r                                                                                                                          | Low to mediu                                                                     | um          | Slow to very slow                                                                | Low to medium                                          | MH                | SILT          |
| sRAIN<br>s thai                                                                                                | k CLA<br>d limit<br>than 5                                                                                                                | High                                                                             |             | None                                                                             | High                                                   | СН                | CLAY          |
| FINE O<br>les                                                                                                  | SILTS &<br>Liqui<br>greater                                                                                                               | Medium to Hi                                                                     | igh         | None                                                                             | Low to medium                                          | ОН                | ORGANIC CLAY  |
| HIGHLY                                                                                                         | ORGANIC                                                                                                                                   | Readily identifie                                                                | d by colou  | r, odour, spongy feel a                                                          | and frequently by fibrous texture by fibrous texture.  | PT                | PEAT          |
| <ul> <li>Lov</li> </ul>                                                                                        | v plasticitv                                                                                                                              | - Liquid Limit willess                                                           | than 35%    | <ul> <li>Medium plasticit</li> </ul>                                             | v – will between 35% and 50%.   High plasticity – will | areater than 50%. |               |

# Particle size descriptive terms

| NAME     | SUBDIVISION              | SIZE                                                  |
|----------|--------------------------|-------------------------------------------------------|
| Boulders |                          | >200 mm<br>63 mm to 200 mm                            |
| Cobbles  |                          |                                                       |
| Gravel   | coarse<br>medium<br>fine | 20 mm to 63 mm<br>6 mm to 20 mm<br>2.36 mm to 6 mm    |
| Sand     | coarse<br>medium<br>fine | 600 μm to 2.36 mm 200 μm to<br>600 μm 75 μm to 200 μm |

# Minor components

| TERM      | ASSESSMENT GUIDE                                                                                                                            | PROPORTION OF MINOR<br>COMPONENT IN:                          |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Trace of  | Presence just detectable by<br>feel or eye, but soil properties<br>little or no different to general<br>properties of primary<br>component. | Coarse grained soils: <5%<br>Fine grained soils: <15%         |
| With some | Presence easily detected by<br>feel or eye, soil properties<br>little different to general<br>properties of primary<br>component.           | Coarse grained soils: 5 - 12%<br>Fine grained soils: 15 - 30% |



# Moisture condition

| TERM  | DEFINITION                                                                                                                            |
|-------|---------------------------------------------------------------------------------------------------------------------------------------|
| Dry   | Looks and feels dry. Cohesive and cemented soils are hard, friable<br>or powdery. Uncemented granular soils run freely through hands. |
| Moist | Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.                                 |
| Wet   | As for moist but with free water forming on hands when handled.                                                                       |

# Soil structure

|         | ZONING                                               | CE                  | MENTING                                                                   |
|---------|------------------------------------------------------|---------------------|---------------------------------------------------------------------------|
| Layers  | Continuous<br>across exposure<br>or sample.          | Weakly<br>cemented  | Easily broken up<br>by hand in air or<br>water.                           |
| Lenses  | Discontinuous<br>shape.                              | Moderately cemented | Effort is required<br>to break up the<br>soil by hand in air<br>or water. |
| Pockets | Irregular<br>inclusions of<br>different<br>material. |                     |                                                                           |

# Consistency of cohesive soils

| TERM          | UNDRAINED<br>STRENGTH<br>su (kPa) | VISUAL OBSERVATION IN FIELD                                                  |
|---------------|-----------------------------------|------------------------------------------------------------------------------|
| Very<br>Soft  | <12                               | A finger can be pushed well into the soil with little effort.                |
| Soft          | 12 – 25                           | A finger can be pushed into the soil to about 25mm depth.                    |
| Firm          | 25 – 50                           | The soil can be indented about 5mm with the thumb, but not penetrated.       |
| Stiff         | 50 – 100                          | The surface of the soil can be indented with the thumb, but not penetrated.  |
| Very<br>Stiff | 100 – 200                         | The surface of the soil can be marked, but not indented with thumb pressure. |
| Hard          | >200                              | The surface of the soil can be marked only with the thumbnail.               |
| Friable       | _                                 | Crumbles or powders when scraped by thumbnail.                               |

# Density of granular soils

| TERM         | DENSITY INDEX (%) |
|--------------|-------------------|
| Very loose   | Less than 15      |
| Loose        | 15 – 35           |
| Medium Dense | 35 – 65           |
| Dense        | 65 – 85           |
| Very Dense   | Greater than 85   |

# Geological origin

| TRANSPORTED S   | WEATHE                                                                                                             |           |
|-----------------|--------------------------------------------------------------------------------------------------------------------|-----------|
| Fill            | Man made deposit. Fill may be significantly more variable between tested locations than naturally occurring soils. | Extremely |
| Aeolian soil    | Deposited by wind.                                                                                                 | Residual  |
| Alluvial soil   | Deposited by streams and rivers.                                                                                   |           |
| Colluvial soil  | Deposited on slopes (transported downslope by gravity).                                                            |           |
| Lacustrine soil | Deposited by lakes.                                                                                                |           |
| Marine soil     | Deposited in ocean basins, bays, beaches and estuaries.                                                            |           |

#### VEATHERED IN PLACE SOILS

| Extremely weathered material | Structure and fabric of parent rock visible.     |
|------------------------------|--------------------------------------------------|
| Residual soil                | Structure and fabric of parent rock not visible. |



# FIFLD DESCRIPTIONS OF ROCK

#### The descriptive terms used by Terra Insight are given below. They are broadly consistent with Australian Standard AS1726-1993.

Rock Substance In engineering terms rock substance is any naturally occurring aggregate of minerals and organic material which cannot be disintegrated or remoulded by hand in air or water. Other material is described using soil descriptive terms. Effectively homogenous material, may be isotropic or anisotropic.

Defect Discontinuity or break in the continuity of a substance or substances. Mass

Any body of material which is not effectively homogeneous. It can consist of two or more substances without defects, or one or more substances with one or more defects.

# Classification of weathering products

# Rock substance strength terms

| Term                               | Abbreviation | Definition                                                                                                                                                                                                                                                          | Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Abbreviation                          | UCS<br>(MPa)               | Point Load Index<br>Is(50) (MPa) | , Field Guide                                                                                                                                                                                                                                                             |  |  |  |
|------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Residual Soil                      | RS           | Soil derived from the weathering<br>of rock; the mass structure and<br>substance fabric are no longer<br>evident; there is a large change in<br>volume, but the soil has not been                                                                                   | Very Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VL                                    | <2                         | Less than 0.1                    | Material crumbles under firm blows<br>with sharp end of pick; can be peeled<br>with a knife; pieces up to 30mm thick<br>can be broken by finger pressure.                                                                                                                 |  |  |  |
| Extremely<br>Weathered<br>Material | XW           | significantly transported.<br>Material is weathered to such an<br>extent that it has soil properties,<br>ie, it either disintegrates or can be<br>remoulded in water. Original rock<br>fabric still visible.                                                        | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                     | 2 to 6                     | 0.1 to 0.3                       | Easily scored with a knife; indentations<br>1mm to 3mm show with firm bows of a<br>pick point; has a dull sound under<br>hammer. Pieces of core 150mm long<br>by 50mm diameter may be broken by<br>hand. Sharp edges of core may be<br>friable and break during handling. |  |  |  |
| Highly<br>Weathered Rock           | HW           | Rock strength is changed by<br>weathering. The whole of the<br>rock substance is discoloured,<br>usually by iron staining or                                                                                                                                        | Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | М                                     | 6 to 20                    | 0.3 to 1.0                       | Readily scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.                                                                                                                                                           |  |  |  |
|                                    |              | bleaching to the extent that the<br>colour of the original rock is not<br>recognisable. Some minerals are<br>decomposed to clay minerals.                                                                                                                           | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                     | 20 to 60                   | 1 to 3                           | A piece of core 150mm long by 50mm<br>can not be broken by hand but can be<br>broken by a pick with a single firm<br>blow; rock rings under hammer.                                                                                                                       |  |  |  |
|                                    |              | Porosity may be increased by<br>leaching or may be decreased<br>due to the deposition of minerals                                                                                                                                                                   | Very High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VH                                    | 60 to 200                  | 3 to 10                          | Hand specimen breaks after more than one blow of a pick; rock rings under hammer.                                                                                                                                                                                         |  |  |  |
| Moderately<br>Weathered Rock       | MW           | The whole of the rock substance<br>is discoloured, usually by iron<br>staining or bleaching to the                                                                                                                                                                  | Extremely<br>High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EH                                    | >200                       | More than 10                     | Specimen requires many blows with geological pick to break; rock rings under hammer.                                                                                                                                                                                      |  |  |  |
|                                    |              | extent that the colour of the fresh<br>rock is no longer recognisable.                                                                                                                                                                                              | Notes on F<br>In anisotro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rock Substance<br>pic rocks the field | Strength:<br>guide to stre | ngth applies to the s            | trength perpendicular to the                                                                                                                                                                                                                                              |  |  |  |
| Slightly<br>Weathered Rock         | SW           | Rock substance affected by<br>weathering to the extent that<br>partial staining or partial<br>discolouration of the rock<br>substance (usually by limonite)<br>has taken place. The colour and<br>texture of the fresh rock is<br>recognisable: strength properties | anisotropy. High strength anisotropic rocks may break readily parallel to the planar anisotropy. The term "extremely low" is not used as a rock substance strength term. While the term is used in AS1726-1993, the field guide therein makes it clear that materials in that strength range are soils in engineering terms. The unconfined compressive strength for isotropic rocks (and anisotropic rocks which fall across the planar anisotropy) is typically 10 to 25 times the point load index Is(50). The ratio may vary for different rock types. Lower strength rocks often have lower ratios than higher strength rocks. |                                       |                            |                                  |                                                                                                                                                                                                                                                                           |  |  |  |
|                                    |              | are essentially those of the fresh                                                                                                                                                                                                                                  | SUDSTAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NCE DESCRIPT                          |                            | 3,                               |                                                                                                                                                                                                                                                                           |  |  |  |

R

Notes on Weathering:

Fresh Rock

AS1726 suggests the term "Distinctly Weathered" (DW) to cover the range of substance weathering conditions between XW and SW. For projects where it is not practical to delineate between HW and MW or it is judged that there is no advantage in making such a distinction. DW may be used with the definition given in AS1726.

FR

rock substance.

weathering.

Rock substance unaffected by

Where physical and chemical changes were caused by hot gasses and liquids associated with igneous rocks, the term "altered" may be substituted for "weathering" to give the abbreviations XA, HA, MA, SA and DA.

| ROCK NAME      | Simple rock names are used rather than precise geological classification.                     |
|----------------|-----------------------------------------------------------------------------------------------|
| PARTICLE SIZE  | Grain size terms for sandstone are:                                                           |
| Coarse grained | Mainly 0.6mm to 2mm                                                                           |
| Medium grained | Mainly 0.2mm to 0.6mm                                                                         |
| Fine grained   | Mainly 0.06mm (just visible) to 0.2mm                                                         |
| FABRIC         | Terms for layering of penetrative fabric (eg. bedding, cleavage etc. ) are:                   |
| Massive        | No layering or penetrative fabric.                                                            |
| Indistinct     | Layering or fabric just visible. Little effect on properties.                                 |
| Distinct       | Layering or fabric is easily visible. Rock breaks more easily parallel to layering of fabric. |



The defect does not vary in

# Common defects observed in rock

| Term                           | Definition                                                                                                                                                                                                                                         | Diagram           | Map                             | Graphic         | DEFECT SH              | APE TERMS                                                                                        |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|-----------------|------------------------|--------------------------------------------------------------------------------------------------|
| Parting                        | A surface or crack across which the rock                                                                                                                                                                                                           |                   | Symbol                          | (Note 1)        | Planar                 | The def                                                                                          |
| ranng                          | has little or no tensile strength. but<br>which is not parallel or sub parallel to<br>layering or planar anisotropy in the rock<br>substance. May be open or closed.                                                                               |                   | 20<br>Bedding<br>20<br>Cleavage | (Note 2)        | Curved                 | The def<br>orientat                                                                              |
| Joint                          | A surface or crack across which the rock<br>has little or no tensile strength. but<br>which is not parallel or sub parallel to<br>lavering or planar anisotropy in the rock                                                                        |                   | 60                              |                 | Undulatin              | g The def                                                                                        |
|                                | substance. May be open or closed.                                                                                                                                                                                                                  | 11                | ×.                              | (Note 2)        |                        | defined                                                                                          |
| Sheared<br>Zone (Not<br>3)     | Zone of rock substance with roughly<br>eparallel near planar, curved or<br>undulating boundaries cut by closely<br>spaced joints, sheared surfaces or other<br>defects. Some of the defects are usually<br>curved and intersect to divide the mass |                   | 35                              | 1448            | Irregular<br>Note: The | The def<br>of orien<br>assessment o                                                              |
|                                | into lenticular or wedge shaped blocks.                                                                                                                                                                                                            |                   |                                 |                 | ROUGHNE                | SS TERMS                                                                                         |
| Sheared<br>Surface<br>(Note 3) | A near planar, curved or undulating<br>surface which is usually smooth,<br>polished or slickensided.                                                                                                                                               | N. S. S.          | 40                              | 250             | Slickenside            | ed Groove<br>usually                                                                             |
|                                |                                                                                                                                                                                                                                                    |                   |                                 | 5               | Polished               | Shiny s                                                                                          |
| Crushed<br>Seam<br>(Note 3)    | Seam with roughly parallel almost<br>planar boundaries, composed of<br>disoriented, usually angular fragments<br>of the host rock substance which may<br>be more weathered than the host rock.                                                     | (*)<br>(*)<br>(*) | 50                              |                 | Smooth                 | Smoot<br>surface                                                                                 |
| Infilled<br>Seam               | Seam of soil substance usually with<br>distinct roughly parallel boundaries<br>formed by the migration of soil into an<br>open cavity or joint, infilled seams less<br>than 1mm thick may be described as<br>veneer or coating on joint surface.   |                   | 65 GA                           | A. A. A.        | Rough<br>Very Roug     | Many :<br>irregul<br>genera<br>like fin<br><b>h</b> Many                                         |
| Extremely<br>Weathered<br>Seam | Seam of soil substance, often with<br>dgradational boundaries. Formad by<br>weathering of the rock substance in<br>place.                                                                                                                          | Seam              | 32<br>Turturt                   | 11.18           |                        | irregul<br>genera<br>Feels li<br>coarse                                                          |
| Notes on<br>1. Usually         | Defects:<br>borehole logs show the true dip of defects                                                                                                                                                                                             | and face sket     | ches and section                | ns the apparent | COATING 1              | TERMS                                                                                            |
| dip.                           | s and joints are not usually shown on the g                                                                                                                                                                                                        | raphic log uple   | es considered s                 | ignificant      | Clean                  | NO VISIDIE CC                                                                                    |
| Sheared zo                     | ones, sheared surfaces and crushed seam                                                                                                                                                                                                            | s are faults in   | geological terms                | i.              | Stained                | No visible co<br>discoloured                                                                     |
|                                |                                                                                                                                                                                                                                                    |                   |                                 |                 | Veneer                 | A visible coa<br>too thin to n                                                                   |
|                                |                                                                                                                                                                                                                                                    |                   |                                 |                 | Veneer                 | A visible coa<br>Thicker soil o<br>described us<br>terms (eg, in<br>rock strengt<br>described as |

|                                    | orientation                                                                                                                                                                                                     |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Curved                             | The defect has a gradual change in orientation                                                                                                                                                                  |
| Undulating                         | g The defect has a wavy surface                                                                                                                                                                                 |
| Stepped                            | The defect has one or more well defined steps                                                                                                                                                                   |
| Irregular                          | The defect has many sharp changes of orientation                                                                                                                                                                |
| Note: The<br>influenced<br>ROUGHNE | assessment of defect shape is partly<br>by the scale of the observation.<br>SS TERMS                                                                                                                            |
| Slickenside                        | d Grooved or striated surface,<br>usually polished                                                                                                                                                              |
| Polished                           | Shiny smooth surface                                                                                                                                                                                            |
| Smooth                             | Smooth to touch. Few or no surface irregularities                                                                                                                                                               |
| Rough                              | Many small surface<br>irregularities (amplitude<br>generally less than 1mm). Feels<br>like fine to coarse sand paper.                                                                                           |
| Very Roug                          | h Many large surface<br>irregularities (amplitude<br>generally more than 1mm).<br>Feels like, or coarser than very<br>coarse sand paper.                                                                        |
| COATING                            | FERMS                                                                                                                                                                                                           |
| Clean                              | No visible coating                                                                                                                                                                                              |
| Stained                            | No visible coating but surfaces are<br>discoloured                                                                                                                                                              |
| Veneer                             | A visible coating of soil or mineral,<br>too thin to measure; may be patchy                                                                                                                                     |
| Veneer                             | A visible coating up to 1mm thick.<br>Thicker soil material is usually<br>described using appropriate defect<br>terms (eg, infilled seam). Thicker<br>rock strength material is usually<br>described as a vein. |



Borehole No.

**BH01** 

Page 1 of 1

| I                                                                                                                                                                           | Engin                                                                  | eei                 | rin               | g l | _og - B                     | or                | eho            | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                                                   |                                                                                                                                             | Project N                        | lo.:             |                           | TERRA21-                                 | 502                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------|-------------------|-----|-----------------------------|-------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|---------------------------|------------------------------------------|---------------------------------------------|
| ſ                                                                                                                                                                           | Client:                                                                |                     |                   |     | Planning                    | j La              | wyer           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                   |                                                                                                                                             | Commen                           | ced:             |                           | 26/10/2021                               | 1                                           |
|                                                                                                                                                                             | Project                                                                | Nar                 | ne:               |     | Geotech                     | inca              | al Inve        | estigat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion                                                                  |                                                   |                                                                                                                                             | Complete                         | ed:              |                           | 26/10/2021                               | 1                                           |
|                                                                                                                                                                             | Hole Lo<br>Hole P                                                      | ositi               | on:<br>m          |     | No. 60 N<br>269705          | /laci<br>0 m      | leay S         | Street,<br>190146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Narrawallee NSW     Logged E       6.0 m N MGA94 Zone 56     Checked |                                                   |                                                                                                                                             | By:<br>By:                       |                  | ХJ                        |                                          |                                             |
| ŀ                                                                                                                                                                           | Drill Model and Mounting: 1.8t excavator                               |                     |                   |     |                             |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                   | Inclination: -90°                                                                                                                           | RI Surfa                         | ce.              | 3 '                       | 10 m                                     |                                             |
|                                                                                                                                                                             | Hole Diameter:                                                         |                     |                   |     |                             |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                   | Bearing:                                                                                                                                    | Datum:                           | 00.              | AF                        | ID Op                                    | perator: Gary Fox                           |
| ſ                                                                                                                                                                           | Drilling Information                                                   |                     |                   |     |                             |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      | Soil Description                                  |                                                                                                                                             |                                  |                  |                           |                                          | Observations                                |
|                                                                                                                                                                             | hod<br>netration                                                       | port                | er                |     | Samples<br>Tests<br>Remarks | overy             | DI             | Denth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | phic Log                                                             | up<br>Iodr                                        | Material Description<br>Soil name, plasticity/grainsize chara<br>colour, description of secondary cor<br>Minor components, i.e., some/trace | cteristics,<br>nponent.<br>other | sture<br>Idition | sistency<br>ative Density | <b>DCP</b><br>NO OF BLOWS<br>PER 100 mm  | Structure and<br>Additional Observations    |
|                                                                                                                                                                             | Pe Met                                                                 | Sup                 | Wai               |     |                             | Rec               | (m)            | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gra                                                                  | Gro<br>Syn                                        | son substance observations                                                                                                                  | 5                                | Moi<br>Cor       | Con<br>Rel                | Termination                              |                                             |
|                                                                                                                                                                             |                                                                        |                     |                   | S1  | 0.00-0.50 m                 |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | × · · · ×                                                            | SM                                                | Silty SAND: fine to medium sand, grey<br>plasticity                                                                                         | , low                            | м                | MD                        | 8                                        | TOPSOIL                                     |
|                                                                                                                                                                             |                                                                        |                     |                   |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | × · · · · · · · · · · · · · · · · · · ·                              | CI-CH                                             | Silty Sandy CLAY: medium to high plas<br>yellow brown, fine to medium sand                                                                  | sticity,                         | м                | F                         | 4<br>2                                   | FILL                                        |
|                                                                                                                                                                             |                                                                        |                     |                   |     |                             |                   | 9              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                                                    | CI                                                | Sandy CLAY: medium plasticity, browr                                                                                                        | n, fine to                       |                  |                           | 10                                       |                                             |
|                                                                                                                                                                             |                                                                        |                     |                   | S2  | 0.50-1.00 m                 |                   | - <sup>2</sup> | 0.5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                   | medium sand                                                                                                                                 |                                  | м                | St                        | ь<br>9                                   |                                             |
|                                                                                                                                                                             |                                                                        |                     | þ                 |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           | 4                                        |                                             |
|                                                                                                                                                                             |                                                                        |                     | unter             |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                                                    | CI                                                | Silty Sandy CLAY: medium plasticity, v                                                                                                      | vhite, fine to                   | м                | St.                       | 7                                        | ALLUVIAL SOIL                               |
| -                                                                                                                                                                           |                                                                        |                     | Enco              | 53  | 1 00-1 50 m                 |                   | 51             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                    |                                                   | Sendu CLAV: medium plasticity rod br                                                                                                        | our fina ta                      |                  |                           | 6                                        |                                             |
| 017-12-04                                                                                                                                                                   |                                                                        |                     | Not               |     | 1.00 1.00 11                |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                   | coarse sand, with fine to medium sub a                                                                                                      | angular                          |                  |                           | 11                                       |                                             |
| nt 1.00 2(                                                                                                                                                                  |                                                                        |                     |                   |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                   | 9.4.6.6                                                                                                                                     |                                  |                  |                           | 9<br>8                                   |                                             |
| erralnsigt                                                                                                                                                                  |                                                                        |                     |                   |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           | 9                                        |                                             |
| 04 Prj: T                                                                                                                                                                   |                                                                        |                     |                   | S4  | 1.50-2.00 m                 |                   | 1.6            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                   |                                                                                                                                             |                                  | м                | VSt                       | 5                                        |                                             |
| 2017-12-                                                                                                                                                                    |                                                                        |                     |                   |     |                             |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           | 4                                        |                                             |
| 1.00 lib                                                                                                                                                                    |                                                                        |                     |                   |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           | 6                                        |                                             |
| rainsight                                                                                                                                                                   |                                                                        |                     |                   |     |                             |                   | -              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           | 5                                        |                                             |
| Lib: Ter                                                                                                                                                                    |                                                                        |                     |                   |     |                             |                   |                | 2.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                   | Hole Terminated at 2.00 m                                                                                                                   |                                  |                  |                           | <del>5</del>                             |                                             |
| ol - DGD                                                                                                                                                                    |                                                                        |                     |                   |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                    |                                                   | Taigot                                                                                                                                      |                                  |                  |                           | 5                                        |                                             |
| n Situ To                                                                                                                                                                   |                                                                        |                     |                   |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                    |                                                   |                                                                                                                                             |                                  |                  |                           | 4                                        |                                             |
| ab and Ir                                                                                                                                                                   |                                                                        |                     |                   |     |                             |                   | 9.             | 2.5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           | 6<br>8                                   |                                             |
| Datgel L                                                                                                                                                                    |                                                                        |                     |                   |     |                             |                   | 0              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           | 9                                        |                                             |
| 3.00.09                                                                                                                                                                     |                                                                        |                     |                   |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                    |                                                   |                                                                                                                                             |                                  |                  |                           | 9                                        |                                             |
| 35 10.0                                                                                                                                                                     |                                                                        |                     |                   |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           | 8                                        |                                             |
| /2021 08                                                                                                                                                                    |                                                                        |                     |                   |     |                             |                   | -1.0           | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                    |                                                   |                                                                                                                                             |                                  |                  |                           |                                          |                                             |
| ~> 29/11                                                                                                                                                                    |                                                                        |                     |                   |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           |                                          |                                             |
| wingFile:                                                                                                                                                                   |                                                                        |                     |                   |     |                             |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           |                                          |                                             |
| J < <dra< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-  </td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dra<> |                                                                        |                     |                   |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                    |                                                   |                                                                                                                                             |                                  |                  |                           |                                          |                                             |
| 1-502.GF                                                                                                                                                                    |                                                                        |                     |                   |     |                             |                   | -0-            | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           |                                          |                                             |
| TERRA2                                                                                                                                                                      |                                                                        |                     |                   |     |                             |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           |                                          |                                             |
| HOLE 1                                                                                                                                                                      |                                                                        |                     |                   |     |                             |                   |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                   |                                                                                                                                             |                                  |                  |                           |                                          |                                             |
| U BORE                                                                                                                                                                      | Method Penetration                                                     |                     |                   |     |                             |                   | ion            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                             | Vater                                             | Samples and Tes                                                                                                                             | ts                               | <u>^</u>         | Noistu                    | re Condition                             | Consistency/Relative Density                |
| OG IS A                                                                                                                                                                     | AS - Auger Screwing<br>RR - Rock Roller<br>No resistance<br>ranging to |                     |                   |     |                             | sistance<br>ng to | e :            | ⊻ Le\<br>> Infl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /el (Date                                                            | e) U - Undisturbed Sample<br>D - Disturbed Sample | e<br>Toot                                                                                                                                   |                                  | D<br>M           | - Dry<br>- Moist          | VS - Very Soft<br>S - Soft<br>F Firm     |                                             |
| B.GLB 1                                                                                                                                                                     | WB- Washbore                                                           |                     |                   |     |                             | logi              |                | ✓ Parent Par | rtial Los                                                            | STI - Standard Penetration                        | rest                                                                                                                                        |                                  | vv               | - vvel                    | F - Firm<br>VSt - Very Stiff<br>H - Hard |                                             |
| 1T 1.00 L                                                                                                                                                                   | Graphic Loα/C                                                          |                     |                   |     |                             |                   | raphic         | Log/Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ore Los                                                              | nipiele l<br><u>s</u>                             | Classification Sumbo                                                                                                                        | ls and                           |                  | <u>Pla</u>                | stic Limit                               | Fr - Friable<br>VL - Very Loose             |
| AINSIGH                                                                                                                                                                     | <u>Si</u><br>С                                                         | <b>uppo</b><br>- Ca | <u>rt</u><br>sing |     |                             | ]]                | Core<br>indica | recover<br>ates mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed (hato<br>terial)                                                  | ching                                             | Soil Description                                                                                                                            | <u>s ana</u><br>S                |                  |                           | < PL<br>= PL<br>< PI                     | L - LOOSE<br>MD - Medium Dense<br>D - Dense |
| TERR,                                                                                                                                                                       | C - Casing                                                             |                     |                   |     |                             |                   | Core           | loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                   | Classification Syste                                                                                                                        | em                               |                  |                           |                                          | VD - Very Dense                             |



Borehole No.

BH02

Page 1 of 1

| I                                                                                                                                                                                                              | Engir                                 | iee                                                                                      | ring                              | g Log - B                                  | ore                             | eho                              | le                           |                                             |                                           |                                                                                                                                                                          | Project N                                                                    | lo.:                      |                                 | TERRA21-                                                | 502                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------|---------------------------------|----------------------------------|------------------------------|---------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------|---------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                | Client:<br>Projec<br>Hole L<br>Hole F | t Nar<br>.ocati                                                                          | ne:<br>on:<br>on:                 | Planning<br>Geotech<br>No. 60 M<br>269691. | g Lav<br>ninca<br>Macle<br>.0 m | wyer<br>al Inve<br>eay S<br>E 60 | estigat<br>Street,<br>90163  | ion<br>Narra<br>3.0 m l                     | wallee<br>N MGA                           | NSW<br>194 Zone 56                                                                                                                                                       | Commen<br>Complete<br>Logged E<br>Checked                                    | ced:<br>ed:<br>By:<br>By: |                                 | 26/10/2021<br>26/10/2021<br>XJ<br>KG                    |                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                | Drill N<br>Hole [                     | lodel                                                                                    | and                               | Mounting:                                  | 1.8t                            | exca                             | vator                        |                                             |                                           | Inclination: -90°<br>Bearing:                                                                                                                                            | RL Surfa                                                                     | RL Surface: 2.90 m        |                                 |                                                         | perator: Gary Fox                                                                                                                                                                                                      |
| ł                                                                                                                                                                                                              | Drilling Information                  |                                                                                          |                                   |                                            |                                 |                                  |                              |                                             | Soil Description                          |                                                                                                                                                                          |                                                                              |                           |                                 |                                                         | Observations                                                                                                                                                                                                           |
|                                                                                                                                                                                                                | Method<br>Penetration                 | Support                                                                                  | Water                             | Samples<br>Tests<br>Remarks                | Recovery                        | RL<br>(m)                        | Depth<br>(m)                 | Graphic Log                                 | Group<br>Symbol                           | Material Description<br>Soil name, plasticity/grainsize chara<br>colour, description of secondary co<br>Minor components, i.e., some/trace<br>soil substance observation | acteristics,<br>mponent.<br>9 other<br>Is                                    | Moisture<br>Condition     | Consistency<br>Relative Density | DCP<br>NO OF BLOWS<br>PER 100 mm                        | Structure and<br>Additional Observations                                                                                                                                                                               |
| ľ                                                                                                                                                                                                              |                                       |                                                                                          |                                   | S1 0.00-0.50 m                             |                                 |                                  | -                            | ····;                                       | CL-CI                                     | Clayey SAND: fine to medium sand, g<br>low plasticity fines                                                                                                              | rey brown,                                                                   | W                         | F                               |                                                         |                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                |                                       |                                                                                          |                                   | S2 0.50-1.00 m                             |                                 | <br>2.4                          | -<br>-<br>0.5 —<br>-         |                                             | CI-CH                                     | Silty Sandy CLAY: medium plasticity, medium sand                                                                                                                         | white, fine to                                                               | D - M                     | St                              |                                                         | ALLUVIAL SUIL                                                                                                                                                                                                          |
| .00 2017-12-04                                                                                                                                                                                                 |                                       |                                                                                          |                                   | S3 1.00-1.50 m                             |                                 | 1.9                              | -<br>-<br>1.0<br>-<br>-      |                                             | SW                                        | Sandy CLAY: medium plasticity, red b<br>coarse sand, with fine to medium sub<br>gravels                                                                                  | rown, fine to<br>angular                                                     |                           |                                 |                                                         |                                                                                                                                                                                                                        |
| tt 1.00 lib 2017-12-04 Prj: TerraInsight 1                                                                                                                                                                     |                                       |                                                                                          |                                   | S4 1.50-2.00 m                             |                                 | 1.4                              | -<br>-<br>1.5<br>-<br>-<br>- |                                             |                                           |                                                                                                                                                                          |                                                                              | М                         | St                              |                                                         |                                                                                                                                                                                                                        |
| TerraInsig                                                                                                                                                                                                     |                                       |                                                                                          |                                   |                                            |                                 | 6 0                              | - 2.0                        |                                             |                                           |                                                                                                                                                                          |                                                                              |                           |                                 |                                                         |                                                                                                                                                                                                                        |
| 00.09 Datgel Lab and In Situ Tool - DGD   Lib:                                                                                                                                                                 |                                       |                                                                                          |                                   |                                            | -                               | -0.4                             | -<br>-<br>-<br>2.5<br>-      |                                             |                                           | Target                                                                                                                                                                   |                                                                              |                           |                                 |                                                         |                                                                                                                                                                                                                        |
| awingFile>> 29/11/2021 08:35 10.03.0                                                                                                                                                                           |                                       |                                                                                          |                                   |                                            | -                               | -0.1                             | -<br>3.0<br>-<br>-           |                                             |                                           |                                                                                                                                                                          |                                                                              |                           |                                 |                                                         |                                                                                                                                                                                                                        |
| EHOLE 1 TERRA21-502.GPJ < <dr< td=""><td></td><td></td><td></td><td></td><td>-</td><td>-0.6</td><td>-<br/>3.5 —<br/>-<br/>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dr<> |                                       |                                                                                          |                                   |                                            | -                               | -0.6                             | -<br>3.5 —<br>-<br>-         |                                             |                                           |                                                                                                                                                                          |                                                                              |                           |                                 |                                                         |                                                                                                                                                                                                                        |
| T 1.00 LIB.GLB Log IS AU BOR                                                                                                                                                                                   | AS - A<br>RR - R<br>WB- V             | Metho<br>Luger S<br>Cock R<br>Vashb                                                      | <u>d</u><br>Screw<br>oller<br>ore | ving N                                     | o resi<br>rangir<br>refu        | on<br>istance<br>ng to<br>isal   | e :<br>[                     | ⊻ Lev<br>≥ Infl<br>⊲ Par<br>⊲ Co<br>ore Los | vel (Date<br>ow<br>rtial Loss<br>mplete L | Samples and Tess<br>U - Undisturbed Sample<br>D - Disturbed Sample<br>SPT - Standard Penetratic<br>s.oss                                                                 | <u>ts</u><br>e<br>yn Test                                                    | Ā                         | Ioistu<br>D<br>M<br>W           | re Condition<br>- Dry<br>- Moist<br>- Wet<br>stic Limit | Consistency/Relative Density         VS       - Very Soft         S       - Soft         F       - Firm         VSt       - Very Stiff         H       - Hard         Fr       - Friable         VL       - Very Loose |
| <b>TERRAINSIGH1</b>                                                                                                                                                                                            | с<br>С                                | Support     Graphic Log       C - Casing     Indicates       C - Core loss     Core loss |                                   |                                            |                                 |                                  |                              |                                             | ching                                     | Classification Symbol<br>Soil Description<br>Based on Unified S<br>Classification Syste                                                                                  | ols and         < PL         VL         - Very Loc           ns         < PL |                           |                                 |                                                         | L - Loose<br>MD - Medium Dense<br>D - Dense<br>VD - Very Dense                                                                                                                                                         |



Borehole No.

**BH03** 

Page 1 of 1

| E                  | ngir                                                                                                                                                                | nee                | rin        | g L | _og - B                     | or                         | eho                         | le                                                                                                                                                                                                                       |                          |                                                                  |                                                                                                                                                                                                       | Project No                       | D.:                   |                                 | TERRA21-                                                               | 502                                      |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|-----|-----------------------------|----------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|---------------------------------|------------------------------------------------------------------------|------------------------------------------|
|                    | Client                                                                                                                                                              | :                  |            |     | Planning                    | g La                       | wyer                        |                                                                                                                                                                                                                          |                          |                                                                  |                                                                                                                                                                                                       | Commend                          | ced:                  |                                 | 26/10/202                                                              | 1                                        |
|                    | Project<br>Hole L                                                                                                                                                   | ct Nar<br>₋ocati   | ne:<br>on: |     | Geotech<br>No. 60 M         | iinca<br>Mac               | al Inve<br>leav S           | estigat<br>Street.                                                                                                                                                                                                       | ion<br>Narra             | wallee                                                           | NSW                                                                                                                                                                                                   | Logged By: XJ                    |                       |                                 | 1                                                                      |                                          |
|                    | Hole F                                                                                                                                                              | Positi             | on:        |     | 269704.                     | 0 m                        | n E 60                      | 90158                                                                                                                                                                                                                    | 58.0 m N MGA94 Zone 56 0 |                                                                  |                                                                                                                                                                                                       |                                  | Checked By: KG        |                                 |                                                                        |                                          |
|                    | Drill N                                                                                                                                                             | 1odel              | and        | Мо  | unting:                     | 1.8                        | t exca                      | vator                                                                                                                                                                                                                    |                          | Inclination: -90°                                                | RL Surfac                                                                                                                                                                                             | e:                               | 3.0                   | )0 m                            |                                                                        |                                          |
| ┢                  | Hole [                                                                                                                                                              | Diame              | eter:      |     |                             |                            |                             |                                                                                                                                                                                                                          |                          |                                                                  | Bearing:                                                                                                                                                                                              | Datum:                           |                       | A                               | ID Op                                                                  | perator: Gary Fox                        |
| L                  |                                                                                                                                                                     | 1                  | Drill      | ing | Informatio                  | on                         |                             |                                                                                                                                                                                                                          | Soil Description         |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 |                                                                        | Observations                             |
| Mothod             | Penetration                                                                                                                                                         | Support            | Water      |     | Samples<br>Tests<br>Remarks | Recovery                   | RL<br>(m)                   | Depth<br>(m)                                                                                                                                                                                                             | Graphic Log              | Group<br>Symbol                                                  | Material Description<br>Soil name, plasticity/grainsize charac<br>colour, description of secondary con<br>Minor components, i.e., some/trace<br>soil substance observations                           | cteristics,<br>nponent.<br>other | Moisture<br>Condition | Consistency<br>Relative Density | DCP<br>NO OF BLOWS<br>PER 100 mm<br>Termination                        | Structure and<br>Additional Observations |
|                    |                                                                                                                                                                     |                    |            | S1  | 0.00-0.50 m                 |                            |                             | -                                                                                                                                                                                                                        |                          | SW                                                               | Clayey SAND: fine to medium sand, gre                                                                                                                                                                 | ey brown,                        | И - W                 | F                               | 3<br>4                                                                 | TOPSOIL                                  |
|                    |                                                                                                                                                                     | l<br>I<br>I        |            |     |                             |                            |                             | -                                                                                                                                                                                                                        |                          | CI                                                               | Sandy CLAY: medium plasticity, orange<br>and yellow brown and grey mottled, fine<br>medium sand                                                                                                       | e brown<br>e to                  | м                     | St                              | 4<br>7                                                                 | FILL                                     |
|                    |                                                                                                                                                                     |                    |            | 52  | 0.50-1.00 m                 |                            | 2.5                         | 0.5                                                                                                                                                                                                                      | ×                        | CI                                                               | Silty Sandy CLAY: medium plasticity, w medium sand                                                                                                                                                    | /hite, fine to                   |                       | 0                               | 8<br>7                                                                 | ALLUVIAL SOIL                            |
|                    |                                                                                                                                                                     |                    |            | 32  | 0.30-1.00 11                |                            |                             | -                                                                                                                                                                                                                        | ×                        |                                                                  |                                                                                                                                                                                                       | ľ                                | D - М                 | St                              | 8                                                                      |                                          |
|                    |                                                                                                                                                                     |                    | tered      |     |                             |                            |                             | -                                                                                                                                                                                                                        |                          | CI                                                               | Sandy CLAY: medium plasticity, red bro<br>coarse sand, with fine to medium sub a                                                                                                                      | own, fine to<br>angular          |                       |                                 | 7<br>14                                                                |                                          |
|                    |                                                                                                                                                                     |                    | ncoun      |     |                             |                            | 0                           | -                                                                                                                                                                                                                        |                          |                                                                  | gravels                                                                                                                                                                                               |                                  |                       |                                 | 11                                                                     |                                          |
| 7-12-04            |                                                                                                                                                                     |                    | Not E      | S3  | 1.00-1.50 m                 |                            | - <sup>2</sup>              | 1.0 -                                                                                                                                                                                                                    |                          |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 8                                                                      |                                          |
| 1.00 201           |                                                                                                                                                                     |                    |            |     |                             |                            |                             | -                                                                                                                                                                                                                        | <br>                     |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 9                                                                      |                                          |
| rainsight          |                                                                                                                                                                     |                    |            |     |                             |                            |                             | -                                                                                                                                                                                                                        |                          |                                                                  |                                                                                                                                                                                                       |                                  | м                     | St                              | 5<br>8                                                                 |                                          |
| 04 Prj: Te         |                                                                                                                                                                     |                    |            | S4  | 1.50-2.00 m                 |                            | 1.5                         | 1.5                                                                                                                                                                                                                      |                          |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 6                                                                      |                                          |
| 2017-12-           |                                                                                                                                                                     |                    |            |     |                             |                            |                             | -                                                                                                                                                                                                                        |                          |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 6<br>3                                                                 |                                          |
| ht 1.00 lib        |                                                                                                                                                                     |                    |            |     |                             |                            |                             | -                                                                                                                                                                                                                        |                          |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 3                                                                      |                                          |
| Ferralnsig         |                                                                                                                                                                     |                    |            |     |                             |                            | 0                           | 20-                                                                                                                                                                                                                      |                          |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 4                                                                      |                                          |
| SD  Lib: 7         |                                                                                                                                                                     | 1                  |            |     |                             |                            | -                           | -                                                                                                                                                                                                                        | -                        |                                                                  | Hole Terminated at 2.00 m<br>Target                                                                                                                                                                   |                                  |                       |                                 | 9                                                                      |                                          |
| Tool - DC          |                                                                                                                                                                     | 1                  |            |     |                             |                            |                             | -                                                                                                                                                                                                                        |                          |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 11<br>7                                                                |                                          |
| nd In Situ         |                                                                                                                                                                     |                    |            |     |                             |                            |                             | -                                                                                                                                                                                                                        | -                        |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 6                                                                      |                                          |
| gel Lab a          |                                                                                                                                                                     |                    |            |     |                             |                            | 0.5                         | 2.5-                                                                                                                                                                                                                     | 1                        |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 5                                                                      |                                          |
| .09 Datc           |                                                                                                                                                                     |                    |            |     |                             |                            |                             |                                                                                                                                                                                                                          | 1                        |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 4                                                                      |                                          |
| 10.03.00           |                                                                                                                                                                     |                    |            |     |                             |                            |                             | -                                                                                                                                                                                                                        | -                        |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 5                                                                      |                                          |
| 21 08:35           |                                                                                                                                                                     |                    |            |     |                             |                            | 0                           | -                                                                                                                                                                                                                        | 1                        |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 4                                                                      |                                          |
| 9/11/202           |                                                                                                                                                                     |                    |            |     |                             |                            | -0.0                        | 3.0-                                                                                                                                                                                                                     | 1                        |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 5                                                                      |                                          |
| File>> 2           |                                                                                                                                                                     |                    |            |     |                             |                            |                             | -                                                                                                                                                                                                                        | -                        |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 4                                                                      |                                          |
| ⊲Drawing           |                                                                                                                                                                     |                    |            |     |                             |                            |                             | -                                                                                                                                                                                                                        | 1                        |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 4                                                                      |                                          |
| 2.GPJ <            |                                                                                                                                                                     | i                  |            |     |                             |                            | 0.5                         | 3.5-                                                                                                                                                                                                                     | 1                        |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 5<br>6                                                                 |                                          |
| RA21-50            |                                                                                                                                                                     |                    |            |     |                             |                            | 4                           | -                                                                                                                                                                                                                        | -                        |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 | 5                                                                      |                                          |
| LE 1 TER           |                                                                                                                                                                     |                    |            |     |                             |                            |                             | -                                                                                                                                                                                                                        |                          |                                                                  |                                                                                                                                                                                                       |                                  |                       |                                 |                                                                        |                                          |
| BOREHO             |                                                                                                                                                                     | Method Penetration |            |     |                             |                            | ion                         |                                                                                                                                                                                                                          |                          | Vator                                                            | Samples and Test                                                                                                                                                                                      | ie i                             |                       | loietu                          | re Condition                                                           | Consistency/Polative Doneity             |
| IB.GLB Log IS AU I | Method         Penetration           AS - Auger Screwing<br>RR - Rock Roller         No resistance<br>ranging to<br>refusal           WB - Washbore         refusal |                    |            |     |                             | sistance<br>ing to<br>usal | e :                         | Water         Samples and           ✓         Level (Date)         U         - Undisturbed Sam           ▷         Inflow         D         - Disturbed Sam           ✓         Partial Loss         SPT - Standard Pene |                          |                                                                  | Image: Stress         Moisture Condition           ole         D - Dry           M - Moist         M - Moist           ion Test         W - Wet                                                       |                                  |                       | - Dry<br>- Moist<br>- Wet       | VS - Very Soft<br>S - Soft<br>F - Firm<br>VSt - Very Stiff<br>H - Hard |                                          |
| HT 1.00 L          | <u>Graphic Log/C</u>                                                                                                                                                |                    |            |     |                             | raphic                     | Log/Co                      | ore Los                                                                                                                                                                                                                  | S                        | Classification Symbol                                            | Plastic Limit         Fr         Friable           vmbols and         VL         Very Loc                                                                                                             |                                  |                       | Fr - Friable<br>VL - Very Loose |                                                                        |                                          |
| TERRAINSIG         | Support     Core record       C     - Casing       Core loss     Core loss                                                                                          |                    |            |     |                             | Core i<br>indica<br>Core l | recover<br>ites mat<br>loss | ed (hato<br>terial)                                                                                                                                                                                                      | ching                    | Soil Descriptions<br>Based on Unified So<br>Classification Syste | Is and         < PL         L         Loose           S         = PL         MD         Medium           ioil         < PL         D         Dense           m         VD         VD         Very Dei |                                  |                       |                                 | MD - Medium Dense<br>D - Dense<br>VD - Very Dense                      |                                          |



TERR

Borehole No.

BH04

Page 1 of 1

| Ε                                 | ngin                                                                                                                              | ee            | rin           | g Log                  | - B              | or           | eho              | ole                           |                     |                      |                                                                                                                                                                        | Project                                    | No.:                  |                                 | TERRA21-                         | 502                                               |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|------------------------|------------------|--------------|------------------|-------------------------------|---------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------|---------------------------------|----------------------------------|---------------------------------------------------|
|                                   | Client:                                                                                                                           |               |               | Pla                    | anning           | j La         | wyer             |                               |                     |                      |                                                                                                                                                                        | Comme                                      | enced:                |                                 | 26/10/202                        | l                                                 |
|                                   | Projec                                                                                                                            | t Na          | me:           | Ge                     | otech            | inca         | al Inve          | estigat                       | tion                |                      |                                                                                                                                                                        | Comple                                     | eted:                 |                                 | 26/10/202                        | I                                                 |
|                                   | Hole L<br>Hole P                                                                                                                  | ocat<br>ositi | tion:<br>ion: | No.<br>269             | 0.60 №<br>9711.0 | /lacl<br>0 m | leay S<br>1 E 60 | Street,<br>)9015 <sup>,</sup> | Narra<br>1.0 m      | wallee<br>N MG/      | NSW<br>A94 Zone 56                                                                                                                                                     | Logged<br>Checke                           | By:<br>ed By:         |                                 | XJ<br>KG                         |                                                   |
|                                   | Drill M                                                                                                                           | odel          | and           | l Mounting             | g:               | 1.81         | t exca           | avator                        |                     |                      | Inclination: -90°                                                                                                                                                      | RL Surf                                    | face:                 | 3.                              | 10 m                             |                                                   |
| L                                 | Hole D                                                                                                                            | iam           | eter:         |                        |                  |              |                  |                               |                     |                      | Bearing:                                                                                                                                                               | Datum:                                     |                       | Ał                              | ID Op                            | perator: Gary Fox                                 |
|                                   |                                                                                                                                   |               | Drill         | ing Infor              | rmatic           | on           |                  |                               |                     |                      | Soil Descrip                                                                                                                                                           | tion                                       |                       |                                 |                                  | Observations                                      |
| Method                            | Penetration                                                                                                                       | Support       | Water         | Sampl<br>Test<br>Remai | les<br>ts<br>rks | Recovery     | RL<br>(m)        | Depth<br>(m)                  | Graphic Log         | Group<br>Symbol      | Material Description<br>Soil name, plasticity/grainsize char<br>colour, description of secondary co<br>Minor components, i.e., some/trac<br>soil substance observation | acteristics,<br>imponent.<br>e other<br>is | Moisture<br>Condition | Consistency<br>Relative Density | DCP<br>NO OF BLOWS<br>PER 100 mm | Structure and<br>Additional Observations          |
|                                   |                                                                                                                                   |               |               | S1 0.00-0.             | 0.50 m           |              |                  | -                             | ×··×                | SM                   | Silty SAND: fine to medium sand, gre<br>plasticity                                                                                                                     | y, low                                     | M - W                 | MD                              |                                  | TOPSOIL                                           |
|                                   |                                                                                                                                   |               |               |                        |                  |              |                  | -                             | ×                   | СІ-СН                | Silty Sandy CLAY: medium to high pla                                                                                                                                   | asticity,                                  |                       |                                 |                                  | FILL                                              |
|                                   |                                                                                                                                   |               |               | S2 0.50-1              | .00 m            |              | 2.6              | 0.5-                          |                     |                      | yellow brown, fine to medium sand                                                                                                                                      |                                            | М                     | St                              |                                  |                                                   |
|                                   |                                                                                                                                   |               |               |                        |                  |              |                  |                               | × · · · ×           | CI                   | Sandy CLAY: medium plasticity, brow<br>medium sand                                                                                                                     | n, fine to                                 |                       |                                 |                                  | ALLUVIAL SOIL                                     |
|                                   |                                                                                                                                   |               |               |                        |                  |              |                  | -                             |                     |                      |                                                                                                                                                                        |                                            | м                     | VSt                             |                                  |                                                   |
|                                   |                                                                                                                                   |               |               | \$3 1 00 1             | 50 m             |              | 5-               | 1.0-                          |                     |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
|                                   |                                                                                                                                   |               |               | 00 1.00-1.             | .50 111          |              |                  | -                             | × · · ·             | CI                   | Silty Sandy CLAY: medium plasticity,                                                                                                                                   | white, fine t                              | 0                     |                                 |                                  |                                                   |
| 4<br>3-<br>1<br>1<br>2            |                                                                                                                                   |               |               |                        |                  |              |                  |                               |                     |                      | medium plasticity                                                                                                                                                      |                                            |                       |                                 |                                  |                                                   |
|                                   |                                                                                                                                   |               |               |                        |                  |              | 9                | 1.5                           |                     |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
|                                   |                                                                                                                                   |               |               | S4 1.50-2.             | 2.00 m           |              |                  | 1.5 -                         |                     |                      |                                                                                                                                                                        |                                            | М                     | St                              |                                  |                                                   |
|                                   |                                                                                                                                   |               |               |                        |                  |              |                  | -                             |                     |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
|                                   |                                                                                                                                   |               |               |                        |                  |              |                  | -                             |                     |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
|                                   |                                                                                                                                   | +             |               | -                      |                  |              |                  | 2.0                           | <u> </u>            |                      | Hole Terminated at 2.00 m                                                                                                                                              |                                            |                       |                                 |                                  |                                                   |
| 202                               |                                                                                                                                   |               |               |                        |                  |              |                  | -                             | -                   |                      | Taigut                                                                                                                                                                 |                                            |                       |                                 |                                  |                                                   |
|                                   |                                                                                                                                   |               |               |                        |                  |              |                  | -                             |                     |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
|                                   |                                                                                                                                   |               |               |                        |                  |              | 0.6              | 2.5 -                         | -                   |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
|                                   |                                                                                                                                   |               |               |                        |                  |              |                  |                               |                     |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
|                                   |                                                                                                                                   |               |               |                        |                  |              |                  | -                             | -                   |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
|                                   |                                                                                                                                   |               |               |                        |                  |              |                  | 3.0-                          |                     |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
| 5                                 |                                                                                                                                   |               |               |                        |                  |              |                  | -                             | -                   |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
| R                                 |                                                                                                                                   |               |               |                        |                  |              |                  | -                             |                     |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
| 5                                 |                                                                                                                                   |               |               |                        |                  |              | 4                | -                             | -                   |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
|                                   |                                                                                                                                   |               |               |                        |                  |              | ;<br>            | 3.5 -                         |                     |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
|                                   |                                                                                                                                   |               |               |                        |                  |              |                  | -                             | -                   |                      |                                                                                                                                                                        |                                            |                       |                                 |                                  |                                                   |
| Mothed Ponetration                |                                                                                                                                   |               |               |                        |                  |              |                  |                               |                     | Notor                | Samples and To                                                                                                                                                         | rte                                        |                       | Moist                           | uro Condition                    | Consistency/Polative Donsity                      |
| AS - Auger Screwing No resistance |                                                                                                                                   |               |               |                        |                  |              | sistance         | е                             | ⊻ Lev               | vater<br>vel (Date   | e) U - Undisturbed Sample<br>D - Disturbed Sample                                                                                                                      | e                                          | <u>I</u>              | D<br>D                          | - Dry<br>- Moist                 | VS - Very Soft<br>S - Soft                        |
|                                   | WB- W                                                                                                                             | /ashb         | oore          |                        | Î                | refi<br>]    | Jsal             |                               | l> Infl<br>⊲ Pa     | ow<br>rtial Los:     | SPT - Standard Penetrations                                                                                                                                            | on Test                                    |                       | W                               | - Wet                            | F - Firm<br>VSt - Very Stiff<br>H - Hard          |
| Graphic Log/Core Los              |                                                                                                                                   |               |               |                        |                  |              |                  | Log/Co                        | ore Los             | mpiete l<br><u>s</u> | Classification Symbol                                                                                                                                                  | ols and                                    |                       | <u>Pla</u>                      | <u>stic Limit</u>                | Fr - Friable<br>VL - Very Loose                   |
|                                   | Support         Graphic Log/C           C         - Casing         - Core recove           C         - Casing         - Core loss |               |               |                        |                  |              |                  | recover<br>ates mai<br>loss   | ed (hato<br>terial) | ching                | <u>Soil Description</u><br>Based on Unified<br>Classification Svs                                                                                                      | i <u>s</u><br>Soil<br>iem                  |                       |                                 | < PL<br>= PL<br>< PL             | MD - Medium Dense<br>D - Dense<br>VD - Very Dense |







# Appendix E: Laboratory Certificates



Terralnsight Pty Ltd U34 no 10-12 Sylvester Ave Unanderra NSW 2626



NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Karen Gates

| Report        |
|---------------|
| Project name  |
| Project ID    |
| Received Date |

835474-S 60 MACLEY ST NARRAWALLEE TERRA21-502 Oct 26, 2021

| Client Sample ID<br>Sample Matrix<br>Eurofins Sample No.<br>Date Sampled |     |          | BH01_S1_0.5<br>Soil<br>W21-Oc56618<br>Oct 26, 2021 | BH01_S2_1.0<br>Soil<br>W21-Oc56619<br>Oct 26, 2021 | BH01_S3_1.5<br>Soil<br>W21-Oc56620<br>Oct 26, 2021 | BH01_S4_2.0<br>Soil<br>W21-Oc56621<br>Oct 26, 2021 |
|--------------------------------------------------------------------------|-----|----------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Test/Reference                                                           | LOR | Unit     |                                                    |                                                    |                                                    |                                                    |
| Acid Sulfate Soils Field pH Test                                         |     |          |                                                    |                                                    |                                                    |                                                    |
| pH-F (Field pH test)*                                                    | 0.1 | pH Units | 5.4                                                | 4.9                                                | 4.8                                                | 4.9                                                |
| pH-FOX (Field pH Peroxide test)*                                         | 0.1 | pH Units | 3.5                                                | 3.4                                                | 3.6                                                | 3.6                                                |
| Reaction Ratings* <sup>S05</sup>                                         | 0   | -        | 2.0                                                | 1.0                                                | 4.0                                                | 4.0                                                |

| Client Sample ID<br>Sample Matrix<br>Eurofins Sample No.<br>Date Sampled<br>Test/Reference | LOR | Unit     | BH02_S1_0.5<br>Soil<br>W21-Oc56622<br>Oct 26, 2021 | BH02_S2_1.0<br>Soil<br>W21-Oc56623<br>Oct 26, 2021 | BH02_S3_1.5<br>Soil<br>W21-Oc56624<br>Oct 26, 2021 | BH02_S4_2.0<br>Soil<br>W21-Oc56625<br>Oct 26, 2021 |
|--------------------------------------------------------------------------------------------|-----|----------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Acid Sulfate Soils Field pH Test                                                           |     |          |                                                    |                                                    |                                                    |                                                    |
| pH-F (Field pH test)*                                                                      | 0.1 | pH Units | 4.9                                                | 5.2                                                | 5.4                                                | 5.4                                                |
| pH-FOX (Field pH Peroxide test)*                                                           | 0.1 | pH Units | 4.0                                                | 3.4                                                | 3.7                                                | 3.5                                                |
| Reaction Ratings*S05                                                                       | 0   | -        | 1.0                                                | 4.0                                                | 4.0                                                | 4.0                                                |

| Client Sample ID<br>Sample Matrix<br>Eurofins Sample No.<br>Date Sampled |     | Lipit    | BH03_S1_0.5<br>Soil<br>W21-Oc56626<br>Oct 26, 2021 | BH03_S2_1.0<br>Soil<br>W21-Oc56627<br>Oct 26, 2021 | BH03_S3_1.5<br>Soil<br>W21-Oc56628<br>Oct 26, 2021 | BH03_S4_2.0<br>Soil<br>W21-Oc56629<br>Oct 26, 2021 |
|--------------------------------------------------------------------------|-----|----------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Acid Sulfate Soils Field pH Test                                         | LUK | Unit     |                                                    |                                                    |                                                    |                                                    |
| pH-F (Field pH test)*                                                    | 0.1 | pH Units | 5.1                                                | 5.0                                                | 5.0                                                | 5.2                                                |
| pH-FOX (Field pH Peroxide test)*                                         | 0.1 | pH Units | 3.7                                                | 3.5                                                | 3.8                                                | 3.7                                                |
| Reaction Ratings* <sup>S05</sup>                                         | 0   | -        | 4.0                                                | 3.0                                                | 4.0                                                | 4.0                                                |



| Client Sample ID<br>Sample Matrix<br>Eurofins Sample No.<br>Date Sampled |     |          | BH04_S1_0.5<br>Soil<br>W21-Oc56630<br>Oct 26, 2021 | BH04_S2_1.0<br>Soil<br>W21-Oc56631<br>Oct 26, 2021 | BH04_S3_1.5<br>Soil<br>W21-Oc56632<br>Oct 26, 2021 | BH04_S4_2.0<br>Soil<br>W21-Oc56633<br>Oct 26, 2021 |
|--------------------------------------------------------------------------|-----|----------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Test/Reference                                                           | LOR | Unit     |                                                    |                                                    |                                                    |                                                    |
| Acid Sulfate Soils Field pH Test                                         |     |          |                                                    |                                                    |                                                    |                                                    |
| pH-F (Field pH test)*                                                    | 0.1 | pH Units | 4.9                                                | 4.8                                                | 5.3                                                | 5.4                                                |
| pH-FOX (Field pH Peroxide test)*                                         | 0.1 | pH Units | 3.7                                                | 3.7                                                | 4.2                                                | 4.4                                                |
| Reaction Ratings* <sup>S05</sup>                                         | 0   | -        | 3.0                                                | 3.0                                                | 4.0                                                | 4.0                                                |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

# DescriptionTestingAcid Sulfate Soils Field pH TestBrisbar

**Testing Site** Brisbane Extracted Nov 04, 2021 Holding Time 7 Days

- Method: LTM-GEN-7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests

| ABN: 50 005 085 5 |                                            |                                                       |                          |         |                                                                                                               | Testi                                        | ng Australia Pty Lto                                                                                         | I                                                                                                            |                                                                                                                                               | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                            | Eurofins Environment Testing NZ Limited<br>NZBN: 9429046024954                                  |                                                                                                         |  |
|-------------------|--------------------------------------------|-------------------------------------------------------|--------------------------|---------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| web: w<br>email:  | ww.eurofins.com.au<br>EnviroSales@eurofins | .com                                                  | ronment                  | Testing | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 317<br>Phone : +61 3 8564 5000<br>NATA # 1261 Site # 1254 | Syd<br>Unit<br>5 16 M<br>Lane<br>Phot<br>NAT | ney<br>F3, Building F<br>Aars Road<br>e Cove West NSW 2066<br>ne : +61 2 9900 8400<br>'A # 1261 Site # 18217 | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 20794 | Newcastle<br>4/52 Industrial Drive<br>Mayfield East NSW 2304<br>PO Box 60 Wickham 2293<br>Phone : +61 2 4968 8448<br>NATA # 1261 Site # 25079 | Perth<br>46-48 Banksia Road<br>Welshpool WA 6106<br>Phone : +61 8 6253 4444<br>NATA # 2377 Site # 2370 | Auckland<br>35 O'Rorke Road<br>Penrose, Auckland 1061<br>Phone : +64 9 526 45 51<br>IANZ # 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston, Christchurch 7675<br>Phone : 0800 856 450<br>IANZ # 1290 |  |
| Co<br>Ad          | mpany Name:<br>dress:                      | Terralnsight<br>U34 no 10-12<br>Unanderra<br>NSW 2626 | Pty Ltd<br>2 Sylvester A | ve      |                                                                                                               |                                              | Order No.:<br>Report #:<br>Phone:<br>Fax:                                                                    | 835474<br>0458 008 030                                                                                       |                                                                                                                                               | Received:<br>Due:<br>Priority:<br>Contact Name:                                                        | Oct 26, 2021 4:53<br>Nov 2, 2021<br>5 Day<br>Karen Gates                                        | РМ                                                                                                      |  |
| Pro<br>Pro        | oject Name:<br>oject ID:                   | 60 MACLEY<br>TERRA21-50                               | ST NARRAV<br>02          | /ALLEE  |                                                                                                               |                                              |                                                                                                              |                                                                                                              |                                                                                                                                               | Eurofins Analytical                                                                                    | Services Manager :                                                                              | Jrsula Long                                                                                             |  |
|                   |                                            | Sa                                                    | mple Detail              |         |                                                                                                               | Acid Sulfate Soils Field pH Test             |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| Melk              | ourne Laborato                             | ory - NATA # 12                                       | 61 Site # 125            | 54      |                                                                                                               |                                              |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| Sydi              | hey Laboratory                             | - NATA # 1261                                         | Site # 18217             | 4       |                                                                                                               | ~                                            |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| May               | field Laborator                            | - NATA # 1261                                         | Site # 20/9              | 4       |                                                                                                               | ^                                            |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| Port              | h Laboratory - N                           | - NATA # 1201                                         | 6 # 2370                 |         |                                                                                                               |                                              |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| Exte              | rnal Laboratory                            |                                                       |                          |         |                                                                                                               |                                              |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| No                | Sample ID                                  | Sample Date                                           | Sampling<br>Time         | Matrix  | LAB ID                                                                                                        |                                              |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| 1                 | BH01_S1_0.5                                | Oct 26, 2021                                          |                          | Soil    | W21-Oc56618                                                                                                   | Х                                            |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| 2                 | BH01_S2_1.0                                | Oct 26, 2021                                          |                          | Soil    | W21-Oc56619                                                                                                   | Х                                            |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| 3                 | BH01_S3_1.5                                | Oct 26, 2021                                          |                          | Soil    | W21-Oc56620                                                                                                   | Х                                            |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| 4                 | BH01_S4_2.0                                | Oct 26, 2021                                          |                          | Soil    | W21-Oc56621                                                                                                   | Х                                            |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| 5                 | BH02_S1_0.5                                | Oct 26, 2021                                          |                          | Soil    | W21-Oc56622                                                                                                   | Х                                            |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| 6                 | BH02_S2_1.0                                | Oct 26, 2021                                          |                          | Soil    | W21-Oc56623                                                                                                   | Х                                            |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| 7                 | BH02_S3_1.5                                | Oct 26, 2021                                          |                          | Soil    | W21-Oc56624                                                                                                   | Х                                            |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| 8                 | BH02_S4_2.0                                | Oct 26, 2021                                          |                          | Soil    | W21-Oc56625                                                                                                   | Х                                            |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |
| 9                 | BH03_S1_0.5                                | Oct 26, 2021                                          |                          | Soil    | W21-Oc56626                                                                                                   | Х                                            |                                                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |  |

| ••• eurofir                                               | Eurofins Environmer<br>ABN: 50 005 085 521                             | t Tes   | ting Australia Pty Lto                                                                                         | I                                | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                                                                                                                                                                                              | Eurofins Environmen<br>NZBN: 9429046024954 | t Testing NZ Limited                                                                                                                          |                                                                                                        |                                                                                                 |                                                                                                         |
|-----------------------------------------------------------|------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| web: www.eurofins.com.au<br>email: EnviroSales@eurofins.c | m Environment Testing                                                  |         | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 3175<br>Phone : +61 3 8564 5000<br>NATA # 1261 Site # 1254 |                                  | Sydney         Brisbane           Unit F3, Building F         1/21 Smallwood Place           16 Mars Road         Murarrie QLD 4172           Lane Cove West NSW 2066         Phone : +61 7 3902 4600           Phone : +61 2 9900 8400         NATA # 1261 Site # 20794 |                                            | Newcastle<br>4/52 Industrial Drive<br>Mayfield East NSW 2304<br>PO Box 60 Wickham 2293<br>Phone : +61 2 4968 8448<br>NATA # 1261 Site # 25079 | Perth<br>46-48 Banksia Road<br>Welshpool WA 6106<br>Phone : +61 8 6253 4444<br>NATA # 2377 Site # 2370 | Auckland<br>35 O'Rorke Road<br>Penrose, Auckland 1061<br>Phone : +64 9 526 45 51<br>IANZ # 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston, Christchurch 7675<br>Phone : 0800 856 450<br>IANZ # 1290 |
| Company Name:<br>Address:                                 | Terralnsight Pty Ltd<br>U34 no 10-12 Sylveste<br>Unanderra<br>NSW 2626 | er Ave  |                                                                                                                |                                  | Order No.:<br>Report #:<br>Phone:<br>Fax:                                                                                                                                                                                                                                | 835474<br>0458 008 030                     |                                                                                                                                               | Received:<br>Due:<br>Priority:<br>Contact Name:                                                        | Oct 26, 2021 4:53<br>Nov 2, 2021<br>5 Day<br>Karen Gates                                        | РМ                                                                                                      |
| Project Name:<br>Project ID:                              | 60 MACLEY ST NARR<br>TERRA21-502                                       | AWALLEE |                                                                                                                |                                  |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               | Eurofins Analytical                                                                                    | Services Manager : I                                                                            | Jrsula Long                                                                                             |
| Sample Detail                                             |                                                                        |         |                                                                                                                | Acid Sulfate Soils Field pH Test |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| Melbourne Laborator                                       | ry - NATA # 1261 Site # <sup>.</sup>                                   | 1254    |                                                                                                                |                                  |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| Sydney Laboratory -                                       | NATA # 1261 Site # 182                                                 | 17      |                                                                                                                |                                  |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| Brisbane Laboratory                                       | - NATA # 1261 Site # 20                                                | 0794    |                                                                                                                | Х                                |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| Mayfield Laboratory                                       | - NATA # 1261 Site # 25                                                | 079     |                                                                                                                |                                  |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| Perth Laboratory - N                                      | ATA # 2377 Site # 2370                                                 |         |                                                                                                                |                                  |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| External Laboratory                                       | <b>0</b>                                                               |         |                                                                                                                |                                  |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| 10 BH03_S2_1.0                                            | Oct 26, 2021                                                           | Soil    | W21-Oc56627                                                                                                    | X                                |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| 11 BH03_S3_1.5                                            | Oct 26, 2021                                                           | Soil    | W21-Oc56628                                                                                                    | X                                |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| 12 BH03_S4_2.0                                            | Oct 26, 2021                                                           | Soil    | W21-Oc56629                                                                                                    | X                                |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| 13 BH04_S1_0.5                                            | Oct 26, 2021                                                           | Soil    | W21-Oc56630                                                                                                    | X                                |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| 14 BH04_S2_1.0                                            |                                                                        | Soil    | W21-Oc56631                                                                                                    | X                                |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| 15 BH04_S3_1.5                                            | Oct 26, 2021                                                           | Soll    | W21-Oc56632                                                                                                    | X                                |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| To BHU4_54_2.0                                            | UCT 26, 2021                                                           | 12011   | W21-OC56633                                                                                                    | X                                |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| Test Counts                                               |                                                                        |         |                                                                                                                | 16                               |                                                                                                                                                                                                                                                                          |                                            |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

| onits                                    |                                    |                                                                  |
|------------------------------------------|------------------------------------|------------------------------------------------------------------|
| mg/kg: milligrams per kilogram           | mg/L: milligrams per litre         | ug/L: micrograms per litre                                       |
| ppm: Parts per million                   | ppb: Parts per billion             | %: Percentage                                                    |
| org/100mL: Organisms per 100 millilitres | NTU: Nephelometric Turbidity Units | MPN/100mL: Most Probable Number of organisms per 100 millilitres |

#### Terms

| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                     |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOR              | Limit of Reporting.                                                                                                                                                |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                         |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                              |
| LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery.                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.     |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                         |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                   |
| USEPA            | United States Environmental Protection Agency                                                                                                                      |
| APHA             | American Public Health Association                                                                                                                                 |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                         |
| сос              | Chain of Custody                                                                                                                                                   |
| SRA              | Sample Receipt Advice                                                                                                                                              |
| QSM              | US Department of Defense Quality Systems Manual Version                                                                                                            |
| СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                              |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                         |
| WA DWER          | Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA                                                                                      |

#### QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs..

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                             | Lab Sample ID | QA<br>Source | Units    | Result 1 |          |      | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|---------------|--------------|----------|----------|----------|------|----------------------|----------------|--------------------|
| Duplicate                        |               |              |          |          |          |      |                      |                |                    |
| Acid Sulfate Soils Field pH Test |               |              |          | Result 1 | Result 2 | RPD  |                      |                |                    |
| pH-F (Field pH test)*            | W21-Oc56624   | CP           | pH Units | 5.4      | 5.4      | pass | 30%                  | Pass           |                    |



#### Comments

| Sample Integrity                                                           |     |
|----------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used) N/                                          | I/A |
| Attempt to Chill was evident Ye                                            | 'es |
| Sample correctly preserved Ye                                              | 'es |
| Appropriate sample containers have been used Ye                            | es  |
| Sample containers for volatile analysis received with minimal headspace Ye | es  |
| Samples received within HoldingTime Ye                                     | 'es |
| Some samples have been subcontracted No.                                   | lo  |

#### **Qualifier Codes/Comments**

Code

Description

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction. S05

#### Authorised by:

Ursula Long Myles Clark

Analytical Services Manager Senior Analyst-SPOCAS (QLD)

**Glenn Jackson General Manager** 

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



Terralnsight Pty Ltd U34 no 10-12 Sylvester Ave Unanderra NSW 2626



NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

| Attentior | 1: |
|-----------|----|
|           | •• |

Karen Gates

Report Project name Project ID Received Date 839296-S 60 MACLEY ST NARRAWALLEE TERRA21-502 Nov 08, 2021

| Client Sample ID                                                               |       |            | BH02_S2_1.0  |
|--------------------------------------------------------------------------------|-------|------------|--------------|
| Sample Matrix                                                                  |       |            | Soil         |
| Eurofins Sample No.                                                            |       |            | B21-No20230  |
| Date Sampled                                                                   |       |            | Oct 26, 2021 |
| Test/Reference                                                                 | LOR   | Unit       |              |
| Extraneous Material                                                            |       |            |              |
| <2mm Fraction                                                                  | 0.005 | g          | 24           |
| >2mm Fraction                                                                  | 0.005 | g          | < 0.005      |
| Analysed Material                                                              | 0.1   | %          | 100          |
| Extraneous Material                                                            | 0.1   | %          | < 0.1        |
| Chromium Suite - NASSG (Excluding ANC)                                         |       |            |              |
| CRS suite - NASSG (Excluding ANC) - Liming Rate                                | 1     | kg CaCO3/t | 1.7          |
| CRS suite - NASSG (Excluding ANC) - Net Acidity (Acidity Units)                | 10    | mol H+/t   | 22           |
| CRS Suite - NASSG (Excluding ANC) - Net Acidity (Sulfur Units)                 | 0.02  | % S        | 0.04         |
| pH-KCL                                                                         | 0.1   | pH Units   | 5.3          |
| Acid trail - Titratable Actual Acidity                                         | 2     | mol H+/t   | 17           |
| sulfidic - TAA equiv. S% pyrite                                                | 0.003 | % pyrite S | 0.030        |
| Chromium Reducible Sulfur <sup>S04</sup>                                       | 0.005 | % S        | 0.009        |
| Chromium Reducible Sulfur -acidity units                                       | 3     | mol H+/t   | 5.6          |
| Sulfur - KCI Extractable                                                       | 0.02  | % S        | N/A          |
| HCI Extractable Sulfur Correction Factor                                       | 1     | factor     | 2.0          |
| HCI Extractable Sulfur                                                         | 0.02  | % S        | N/A          |
| Net Acid soluble sulfur                                                        | 0.02  | % S        | N/A          |
| Net Acid soluble sulfur - acidity units                                        | 10    | mol H+/t   | N/A          |
| Net Acid soluble sulfur - equivalent S% pyrite <sup>S02</sup>                  | 0.02  | % S        | N/A          |
| Acid Neutralising Capacity (ANCbt)                                             | 0.01  | % CaCO3    | N/A          |
| Acid Neutralising Capacity - acidity (a-ANCbt)                                 | 2     | mol H+/t   | N/A          |
| Acid Neutralising Capacity - equivalent S% pyrite (s-<br>ANCbt) <sup>S03</sup> | 0.02  | % S        | N/A          |
| ANC Fineness Factor                                                            |       | factor     | 1.5          |
| CRS Suite - Net Acidity (Sulfur Units)                                         | 0.02  | % S        | 0.04         |
| CRS Suite - Net Acidity (Acidity Units)                                        | 10    | mol H+/t   | 22           |
| CRS Suite - Liming Rate <sup>S01</sup>                                         | 1     | kg CaCO3/t | 1.7          |
|                                                                                |       | _          |              |
| % Moisture                                                                     | 1     | %          | 12           |
|                                                                                |       |            |              |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                            | Testing Site | Extracted    | Holding Time |
|--------------------------------------------------------|--------------|--------------|--------------|
| Extraneous Material                                    | Brisbane     | Nov 09, 2021 | 6 Week       |
| - Method: LTM-GEN-7050/7070                            |              |              |              |
| Chromium Suite - NASSG (Excluding ANC)                 | Brisbane     | Nov 09, 2021 | 6 Week       |
| - Method: LTM-GEN-7070 Chromium Reducible Sulfur Suite |              |              |              |
| % Moisture                                             | Brisbane     | Nov 09, 2021 | 14 Days      |
| - Method: LTM-GEN-7080 Moisture                        |              |              |              |

| Eurofins Enviror<br>ABN: 50 005 085 52                     |                          |                                                      |                                |        |                                                                                                           | ent Te                                                                                                                                                                                                                                                    | esting /                              | Australia Pty Lto                                                              | I                                                                                                            |                                                                                                                                               | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                            | Eurofins Environment                                                                            | Testing NZ Limited                                                                                      |
|------------------------------------------------------------|--------------------------|------------------------------------------------------|--------------------------------|--------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| web: www.eurofins.com.au<br>email: EnviroSales@eurofins.co |                          | .com                                                 | Environment Testing            |        | Melbourne<br>6 Monterey Road<br>Dandenong South VIC 3<br>Phone : +61 3 8564 500<br>NATA # 1261 Site # 125 | sydney           srey Road         Unit F3, Building F           iong South VIC 3175         16 Mars Road           +61 3 8564 5000         Lane Cove West NSW           ‡ 1261 Site # 1254         Phone : +61 2 9900 84           NATA # 1261 Site # 18 |                                       | Building F<br>Road<br>ve West NSW 2066<br>⊧61 2 9900 8400<br>1261 Site # 18217 | Brisbane<br>1/21 Smallwood Place<br>Murarrie QLD 4172<br>Phone : +61 7 3902 4600<br>NATA # 1261 Site # 20794 | Newcastle<br>4/52 Industrial Drive<br>Mayfield East NSW 2304<br>PO Box 60 Wickham 2293<br>Phone : +61 2 4968 8448<br>NATA # 1261 Site # 25079 | Perth<br>46-48 Banksia Road<br>Welshpool WA 6106<br>Phone : +61 8 6253 4444<br>NATA # 2377 Site # 2370 | Auckland<br>35 O'Rorke Road<br>Penrose, Auckland 1061<br>Phone : +64 9 526 45 51<br>IANZ # 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston, Christchurch 7675<br>Phone : 0800 856 450<br>IANZ # 1290 |
| Coi<br>Ade                                                 | mpany Name:<br>dress:    | Terralnsight<br>U34 no 10-1<br>Unanderra<br>NSW 2626 | Pty Ltd<br>2 Sylvester Av      | ve     |                                                                                                           |                                                                                                                                                                                                                                                           | O<br>Ri<br>Pi<br>Fa                   | rder No.:<br>eport #:<br>hone:<br>ax:                                          | 839296<br>0458 008 030                                                                                       |                                                                                                                                               | Received:<br>Due:<br>Priority:<br>Contact Name:                                                        | Nov 8, 2021 12:59<br>Nov 15, 2021<br>5 Day<br>Karen Gates                                       | РМ                                                                                                      |
| Pro<br>Pro                                                 | oject Name:<br>oject ID: | 60 MACLEY<br>TERRA21-50                              | ST NARRAW                      | /ALLEE |                                                                                                           |                                                                                                                                                                                                                                                           |                                       |                                                                                |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
|                                                            | ·                        |                                                      |                                |        |                                                                                                           |                                                                                                                                                                                                                                                           |                                       |                                                                                |                                                                                                              |                                                                                                                                               | Eurofins Analytical                                                                                    | Services Manager : l                                                                            | Jrsula Long                                                                                             |
|                                                            |                          | Sa                                                   | mple Detail                    |        |                                                                                                           | loisture Set                                                                                                                                                                                                                                              | hromium Suite - NASSG (Excluding ANC) |                                                                                |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| Melb                                                       | ourne Laborato           | ory - NATA # 12                                      | 61 Site # 125                  | 4      |                                                                                                           |                                                                                                                                                                                                                                                           |                                       |                                                                                |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| Brist                                                      | bane Laboratory          | - NATA # 1201 -<br>/ - NATA # 126'                   | Site # 16217<br>1 Site # 20794 | 4      |                                                                                                           | x                                                                                                                                                                                                                                                         | x                                     | 1                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| Mayf                                                       | ield Laboratory          | - NATA # 1261                                        | Site # 25079                   | •<br>} |                                                                                                           |                                                                                                                                                                                                                                                           |                                       | -                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| Perth                                                      | h Laboratory - N         | IATA # 2377 Sit                                      | te # 2370                      |        |                                                                                                           |                                                                                                                                                                                                                                                           |                                       |                                                                                |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| Exte                                                       | rnal Laboratory          |                                                      |                                |        |                                                                                                           |                                                                                                                                                                                                                                                           |                                       | ]                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| No                                                         | Sample ID                | Sample Date                                          | Sampling<br>Time               | Matrix | LAB ID                                                                                                    |                                                                                                                                                                                                                                                           |                                       |                                                                                |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| 1                                                          | BH02_S2_1.0              | Oct 26, 2021                                         |                                | Soil   | B21-No20230                                                                                               | Х                                                                                                                                                                                                                                                         | X                                     | 4                                                                              |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |
| Test                                                       | Counts                   |                                                      |                                |        |                                                                                                           | 1                                                                                                                                                                                                                                                         | 1                                     |                                                                                |                                                                                                              |                                                                                                                                               |                                                                                                        |                                                                                                 |                                                                                                         |



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

| onits                                                               |                                                                          |
|---------------------------------------------------------------------|--------------------------------------------------------------------------|
| mg/kg: milligrams per kilogram mg/L: milligrams per litre           | ug/L: micrograms per litre                                               |
| ppm: Parts per million ppb: Parts per billion                       | %: Percentage                                                            |
| org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidi | y Units MPN/100mL: Most Probable Number of organisms per 100 millilitres |

#### Terms

| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                     |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOR              | Limit of Reporting.                                                                                                                                                |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                         |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                              |
| LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery.                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.     |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                         |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                   |
| USEPA            | United States Environmental Protection Agency                                                                                                                      |
| APHA             | American Public Health Association                                                                                                                                 |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                         |
| coc              | Chain of Custody                                                                                                                                                   |
| SRA              | Sample Receipt Advice                                                                                                                                              |
| QSM              | US Department of Defense Quality Systems Manual Version                                                                                                            |
| СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                              |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                         |
| WA DWER          | Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA                                                                                      |

#### QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs..

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                                                               |               | Units        | Result 1   |          |          | Acceptance<br>Limits | Pass<br>Limits       | Qualifying<br>Code |                    |
|--------------------------------------------------------------------|---------------|--------------|------------|----------|----------|----------------------|----------------------|--------------------|--------------------|
| LCS - % Recovery                                                   |               |              |            |          |          |                      |                      |                    |                    |
| Chromium Suite - NASSG (Excluding ANC)                             |               |              |            |          |          |                      |                      |                    |                    |
| pH-KCL                                                             |               |              | %          | 100      |          |                      | 80-120               | Pass               |                    |
| Acid trail - Titratable Actual Acidity                             |               |              | %          | 91       |          |                      | 80-120               | Pass               |                    |
| Chromium Reducible Sulfur                                          |               |              | %          | 97       |          |                      | 80-120               | Pass               |                    |
| Test                                                               | Lab Sample ID | QA<br>Source | Units      | Result 1 |          |                      | Acceptance<br>Limits | Pass<br>Limits     | Qualifying<br>Code |
| Duplicate                                                          |               |              |            |          |          |                      |                      |                    |                    |
| Chromium Suite - NASSG (Excludi                                    | ng ANC)       |              |            | Result 1 | Result 2 | RPD                  |                      |                    |                    |
| CRS suite - NASSG (Excluding ANC) - Liming Rate                    | B21-No24550   | NCP          | kg CaCO3/t | 1.6      | 1.6      | 1.0                  | 30%                  | Pass               |                    |
| CRS suite - NASSG (Excluding<br>ANC) - Net Acidity (Acidity Units) | B21-No24550   | NCP          | mol H+/t   | 21       | 22       | 1.0                  | 30%                  | Pass               |                    |
| CRS Suite - NASSG (Excluding ANC) - Net Acidity (Sulfur Units)     | B21-No24550   | NCP          | % S        | 0.03     | 0.03     | 1.0                  | 30%                  | Pass               |                    |
| pH-KCL                                                             | B21-No24550   | NCP          | pH Units   | 9.4      | 9.4      | <1                   | 30%                  | Pass               |                    |
| Acid trail - Titratable Actual Acidity                             | B21-No24550   | NCP          | mol H+/t   | < 2      | < 2      | <1                   | 30%                  | Pass               |                    |
| sulfidic - TAA equiv. S% pyrite                                    | B21-No24550   | NCP          | % pyrite S | < 0.003  | < 0.003  | <1                   | 30%                  | Pass               |                    |
| Chromium Reducible Sulfur                                          | B21-No24550   | NCP          | % S        | 0.034    | 0.035    | 1.0                  | 30%                  | Pass               |                    |
| Chromium Reducible Sulfur -acidity units                           | B21-No24550   | NCP          | mol H+/t   | 21       | 22       | 1.0                  | 30%                  | Pass               |                    |
| Sulfur - KCI Extractable                                           | B21-No24550   | NCP          | % S        | N/A      | N/A      | N/A                  | 30%                  | Pass               |                    |
| HCI Extractable Sulfur                                             | B21-No24550   | NCP          | % S        | N/A      | N/A      | N/A                  | 30%                  | Pass               |                    |
| Net Acid soluble sulfur                                            | B21-No24550   | NCP          | % S        | N/A      | N/A      | N/A                  | 30%                  | Pass               |                    |
| Net Acid soluble sulfur - acidity units                            | B21-No24550   | NCP          | mol H+/t   | N/A      | N/A      | N/A                  | 30%                  | Pass               |                    |
| Net Acid soluble sulfur - equivalent S% pyrite                     | B21-No24550   | NCP          | % S        | N/A      | N/A      | N/A                  | 30%                  | Pass               |                    |
| Acid Neutralising Capacity (ANCbt)                                 | B21-No24550   | NCP          | % CaCO3    | 2.8      | 3.0      | 4.0                  | 30%                  | Pass               |                    |
| Acid Neutralising Capacity -<br>equivalent S% pyrite (s-ANCbt)     | B21-No24550   | NCP          | % S        | 0.91     | 0.95     | 4.0                  | 30%                  | Pass               |                    |
| ANC Fineness Factor                                                | B21-No24550   | NCP          | factor     | 1.5      | 1.5      | <1                   | 30%                  | Pass               |                    |
| CRS Suite - Net Acidity (Sulfur<br>Units)                          | B21-No24550   | NCP          | % S        | < 0.02   | < 0.02   | <1                   | 30%                  | Pass               |                    |
| CRS Suite - Net Acidity (Acidity Units)                            | B21-No24550   | NCP          | mol H+/t   | < 10     | < 10     | <1                   | 30%                  | Pass               |                    |
| CRS Suite - Liming Rate                                            | B21-No24550   | NCP          | kg CaCO3/t | < 1      | < 1      | <1                   | 30%                  | Pass               |                    |



#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |
|                                                                         |     |

#### **Qualifier Codes/Comments**

Code Description

| 0000 |                                                                                                                                                                                                                                                                                                                                                             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S01  | Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil' multiply 'reported results' x 'wet bulk density of soil in t/m3' |
| S02  | Retained Acidity is Reported when the pHKCl is less than pH 4.5                                                                                                                                                                                                                                                                                             |
| S03  | Acid Neutralising Capacity is only required if the pHKCl if greater than or equal to pH 6.5                                                                                                                                                                                                                                                                 |
| S04  | Acid Sulfate Soil Samples have a 24 hour holding time unless frozen or dried within that period                                                                                                                                                                                                                                                             |

#### Authorised by:

Ursula Long Myles Clark Analytical Services Manager Senior Analyst-SPOCAS (QLD)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



# Appendix F: ASS Handouts for residential developments



# Urban Development in Acid Sulfate Soil August 1998

## Urban development and acid sulfate soils

Urban development in the coastal zone is often undertaken in areas that contain acid sulfate soils (ASS). In the past, subdivisions have been developed in these areas without appropriate management measures resulting in the foundations of houses corroding, landscaping which would not grow, sewage and water pipes which needed replacing and iron stained drains running with acid water.

The pressure of urban development as well as more intensive agricultural activities has resulted in increased disturbance of these soils with consequential degradation of the water quality in coastal waters. This has contributed to significant impacts on commercial and oyster industry productivity as well as on the recreational fishing and tourist industry.

### What are acid sulfate soils?

Acid sulfate soils contain iron sulfides. Iron sulfides are found underneath the watertable or in a waterlogged condition. While under water, these soils are stable and the sulfides do not cause a problem. When the sulfides are exposed to air as a result of drainage, the construction of levees or even deep cultivation, they form sulfuric acid. In addition to reducing the productivity of the land the acid leachate can acidify adjoining drains, wetlands, creeks and estuaries leading to severe environmental damage as well as loss of fisheries productivity.

The pH is a measure of acidity. Each unit of pH represents a 10 fold change in the concentration of acidity. For example, pH 5 is 10 times more acid than pH 6. The pH of water is usually around neutral approximately pH 7-8. When water has a pH of 5.5 or below, it can kill fish, restrict plant growth and reduce agricultural productivity, and corrode metal and damaging concrete foundations and engineering structures. Acid sulfate soils contain pyrite which, when exposed to air, forms sulfuric acid. For every tonne of pyrite completely oxidised, 1.6 tonnes of pure sulfuric acid is produced. If the soils remain covered or waterlogged and air is excluded, no acid is generated.

When the soils are excavated or drained by activities such as land formation, drainage, road and marina construction and the laying of pipes, acid is generated which can leach out acidifying soils resulting in severe off-site and on-site environmental impacts. Without appropriate management measures, impacts can include poor plant growth and failed landscaping with consequent erosion problems, corrosion of concrete drains, pipes and the foundations of buildings and bridges, and the degradation of water quality in lakes, creeks or rivers resulting in the killing of fish, increased mosquito populations and water unsuitable for recreational or drinking purposes.

### Where do acid sulfate soils occur?

Acid sulfate soils are naturally occurring soils typically in low-lying coastal areas less than five metres above the high tide level. In NSW, acid sulfate soils has been found in every coastal estuary and embayment. The Acid Sulfate Soils Risk Maps developed by Department of Land and Water Conservation indicate the areas where acid sulfate soils are likely to be present. It is estimated that there are over 400,000 ha of acid sulfate soils already impacted by existing and new activities.

# What do you need to do if acid sulfate soils are present

Where earthworks or dredging are proposed in coastal areas likely to contain acid sulfate soils, a preliminary assessment should be made to determine if acid sulfate soils would be disturbed. If likely, an acid sulfate soils management plan should be developed. This information sheet outlines how to recognise and confirm the presence of acid sulfate soils and to minimise the impact on the environment during construction and ongoing management of the development.



# Preliminary assessment to identify acid sulfate soils

Acid sulfate material could be found at any low lying development sites on coastal floodplains particularly if adjacent a tidal rivers and estuaries. You can identify the presence and approximate distribution of acid sulfate soils by using existing mapping information and on-site indicators and field tests. This information is necessary as a first step in developing sustainable management strategies for acid sulfate soils.

#### Desktop assessment

Desktop assessments of acid sulfate soil maps, topographical maps and aerial photographs can help determine the likely presence of acid sulfate soils. The acid sulfate soil planning and risk maps for coastal areas in NSW (Department of Land and Water Conservation) should be the first step in the investigation. These maps can provide a useful indicator as to the likely presence or absence of acid sulfate soil by identifying areas of high, low or no probability of finding acid sulfate soils in the landscape. The maps do not describe the actual severity of acid sulfate soils (ie the percentage of iron sulfides).

Other indicators for the presence of acid sulfate soils include:

- soils deposited in river and on estuary floodplains below approximately 5-10 m
- coastal wetlands or back swamp areas; waterlogged or scalded areas; interdune swales or underlying coastal sand dunes
- areas where the dominant vegetation is mangroves, reeds, rushes and other swamp-tolerant or marine vegetation such as swamp mahogany, paper bark and swamp oak.

### Surface inspection

Actual acid sulfate soils occur where the sulfides in the soils have been exposed to the air and acid is currently being generated. A field inspection for indicators of actual acid sulfate conditions can confirm that acid sulfate material is present on the site. The indicators include soils with pH less than 4; unusually clear or milky green drain water with a pH of less than 5.5; extensive rust-coloured iron stains on any drain surfaces, or iron-stained drain water and ochre deposits; butter-coloured jarosite present in surface spoil, on any material excavated and left exposed or in augured material showing yellow jarositic horizons or red, iron oxide mottling or corrosion of concrete and/or steel structures.

However, just because there are no indicators for actual acid sulfate soils, it doesn't mean that acid sulfate soils are not present. Where the iron sulfides have not been exposed to oxygen, then visual identification may prove difficult. These "potential" acid sulfate soils have the potential to generate acid after they are disturbed and exposed to air. Potential acid sulfate soils are typically waterlogged estuarine sands or silty sands; mid to dark grey to dark greenish grey in colour; soft, buttery consistency of a clay; or pH neutral.

#### Sub-surface inspection and sampling

The next step is to examine the soil profile by using an auger or backhoe pit. (Caution: take care when digging backhoe pits to ensure they do not slump). (See ASS Manual).

- sample the soil to at least the depth of the proposed excavation or estimated drop in watertable height if the groundwater level is likely to be disturbed. Due to the uneven distribution of iron sulfides in the soil, take at least five samples in any one area to understand the likely distribution
- if dredging is to be undertaken, when sampling of dredge material, attention should be paid when collecting sediment samples to ensure that fine silt and clay fraction containing high concentrations of iron sulfides do not drain from the sample during collection.

The pH of the samples should be tested in the field using a pH meter. If the pH is less than 4, it confirms the presence of actual acid sulfate soils. The Peroxide Test (described in the ASS Manual) provides a field test for potential acid sulfate soils. If any of the preliminary assessment indicates that acid sulfate soils could be present, engage a consultant to undertake a more rigorous soil survey and sampling program.

### Laboratory Analysis

The conclusions drawn from the desk top assessment or field inspection should always be confirmed with laboratory analysis. Representative samples should be send for laboratory analysis, to confirm if acid sulfate soils are present and at what concentrations. It is recommended that qualified consultants do the sampling and a laboratory using methods in the ASS Manual undertake the analysis. Further information for determining the concentration of acid sulfate soil, its potential acid generation potential and management options can be found in the ASS Manual.



# Sustainable management of acid sulfate soils

Acid sulfate soils are manageable. It is important to recognise the constraints they pose to extractive industries and to manage the resource accordingly. The most sensible way to manage these soils is to incorporate their management into the operational plan for the extraction of the resource.

### Know your site

The best way to minimise the impacts is to understand the distribution and characteristics of the acid sulfate material on the site. You need to know:

- □ where the acid sulfate soils occur (both laterally and with depth)
- the likely volume of actual acid sulfate soils to be disturbed and the likely quantity of iron
- the size fractions of the resource and what type of material the iron sulfide is associated with (silt, sand, gravel or clay)
- □ the surface and sub-surface hydrology of the site

### **Deciding on a Management Strategies**

Once you know understand the characteristics of acid sulfate, you can make informed management decisions to reduce the risks to the environment and your liability. Options include:

- avoid disturbing acid sulfate soils by avoiding excavation where they are located
- if acid sulfate soil locations cannot be avoided, layout the site to avoid disturbing the acid sulfate material or lowering the watertable
- if acid sulfate soils are to be disturbed, neutralise the acid generation potential, neutralise any acid produced and prevent any acid leaving the site
- if acid sulfate soils have previously been disturbed on the site, design the extraction program to manage any acid already being produced and minimise further production
- ensure that excavated material is managed so that if it is to be used on-site or off-site for any purpose, acid will not be generated.

# **Outline of Management Options**

## Avoid acid sulfate soils

If a soil survey identifies areas containing acid sulfate soils within the excavation site, the most environmentally responsible approach is to avoid the disturbance of these areas. Selection of alternative nonacid sulfate sites in most cases is a preferable to costly remediation of environmental impacts caused by disturbing acid sulfate.

## Place iron sulfide sediments under water

If you do excavate potential acid sulfate material, one option is to place this material or the iron sulfide components that have been separated from the extractive material immediately below the watertable. This may involve over-excavation of an area to provide a disposal site. This option is only practical when an appropriate water balance can be maintained indefinitely and it does not result in turbidity in natural waterbodies.

### Collect and treat acid leachate

If the iron sulfide content of soil is very low, you may be able to oxidise the sulfides by exposing the soil to air and collect and treat the acid produced following exposure to air. If you decide on this approach which may take months to reach completion, the runoff and drainage waters must be contained so as not to contaminate any waters including groundwater. You will need to design containment structures which incorporate barriers or liners to contain all the acid leachate produced from the oxidised sulfides. The design of these structures needs to take local climatic conditions into account. The leachate needs to be neutralised to pH 6.5 - 7.5 using lime before disposal.

### Neutralising acid soil

Traditional methods of ameliorating acid soils have relied on the addition of lime (CaCO<sub>3</sub>). The ability of the soil itself to neutralise the acid (buffering capacity) depends on the amount of exchangeable bases, carbonates and easily weatherable silicate minerals in the soil. However, even though a soil may have buffering capacity, it could be exceeded by the acidgenerating capacity of the soil. The soil's buffering capacity is not related solely to the quality of buffering materials present but, more importantly, to the available surface area and distribution in the soil. In many cases, the buffering agents (naturally occurring marine shell or added lime) may be too coarse to neutralise the acid before it is leached. Any liming material must be thoroughly mixed with the soil if all the acid generated by oxidation of iron sulfides is to be neutralised. The amounts of lime needed may be very large.

### **D** Separation of acid sulfate material

In wet dredging operations, it may be possible to separate the acid sulfate fines from the 'clean' excavated material by sluicing or hydrocycloning techniques. The concentrated acid sulfate fine material can the treated using the methods described above (if appropriate), In estuarine locations, the iron sulfide fraction can contain very high concentrations of salt reducing the possible disposal or treatments options.



# Prepare an Acid Sulfate Soils Management Plan

The management plan should outline how acid sulfate soils will be managed during all stages to minimise impacts on the environment, including the clearing of the site, earth works and landscaping and the digging of foundations for any structures on the site. It should include contingency measures to deal with unpredicted occurrences and monitoring to demonstrate that mitigation measure are effective and no un-acceptable impacts occur.

#### The Management Plan

Prior to undertaking works in acid sulfate soils, a management plan should be developed setting out

- how the extraction will be staged to minimise impacts; the quality controls to ensure operator reliability
- the management of the excavated material, its temporary storage, treatment and use
- the leachate and sediment control procedures and protocols
- contingency measures in case unexpected acid related incidents occur
- monitoring program

Where acid sulfate material is excavated as part of the proposal, the short and long-term management of the material should be considered. Ideally, the extracted acid sulfate material should immediately be managed so that:

- 1. the sulfidic material is not able to be oxidised (eg placed back in an anaerobic environment preferably below the watertable) or.
- 2. the sulfidic material may oxidise under controlled situation with all leachate produced neutralised or
- 3. the sulfidic material is separated out and managed by one of the methods above.

If it is necessary to stockpile the excavated material prior to treatment or disposal, provisions should be made to safely store the material. Stockpiles of acid sulfate soils should be located in settings that ensure minimal environmental impact from any acidic leachate produced. The design of stockpile(s) should:

- establish leachate collection and treatment systems including an impervious pad on which to place the stockpile
- minimise the surface area exposed to oxidation consider using some form of capping if storage is for longer than a few weeks
- minimise the amount of infiltration of water consider using some form of capping
- establish diversion banks upslope to prevent run-on water

establish sediment control structure to ensure sulfidic material is not eroded - consider using some form of capping

The time between excavation and acid generation depends on the texture, mineralogy, temperature and bacterial activity of the excavated material. Take particular care with sand sediments, which oxidise and leach rapidly. Oxidation in clays is often slower than in sands because air does not penetrate as quickly.

### **Excavation and Drainage Principles**

The following "rules of thumb" should apply when considering excavation or drainage:

- 1. Where areas are "scalded" or degraded and devoid of vegetation, no further drainage or excavation should be undertaken. Remediation strategies should be developed.
- Where the sulfidic layers is at a depth below the soil surface of less than 0.5 metres, these areas should be left undrained with the minimum of disturbance. Generally these areas are best left waterlogged.
- Where the sulfidic layer is between 0.5 and 2.0 m from the surface, drainage and excavation should only be attempted in accordance with a properly designed management plan.
  - if the sulfidic layer is 0.5 to 1 metre below the soil surface, excavation should be limited to cuts less than 30 mm.
  - □ *if the sulfidic layer is 1 metre to 1.5 metres below the soil surface*, excavation should be limited to cuts less than 0.5 m.
  - □ *if sulfidic layers more than 1.5 metres below the surface*, excavation should be limited to cuts no greater than 1 metre.

## Monitoring is most important

Monitoring is most important when dealing with acid sulfate material. Discharged water must have a pH between 6.5-8.5 and be licensed (in NSW by the Environment Protection Authority).

#### ACID SOIL ACTION An initiative of the NSW Government.

For further information on the assessment and management of acid sulfate soils, consult the ASS Manual. This leaflet has been produced by NSW ASSMAC. Inquiries: Jon Woodworth, Acid Sulfate Soils Information Officer, Acid Sulfate Soils Management Advisory Committee, NSW Agriculture, Wollongbar Agricultural Institute, Bruxner Highway, WOLLONGBAR NSW 2477 Telephone 02 6626 1340, Fax 02 6628 1744 Disclaimer: Any representation, statement, opinion or advice, expressed or implied in this publication is made in good faith and on the basis that the State of New South Wales, its agents and employees are not liable (whether by reason of negligence, lack of care or otherwise) to any person for any



damage or loss whatsoever which has occurred or may occur in relation to that person taking or not taking (as the case may be) action in respect of any representation, statement or advice referred to above.